DOI

We consider a setup where a distributed set of sensors working cooperatively can estimate an unknown signal of interest, whereas any individual sensor cannot fulfill the task due to lack of necessary information diversity. This article deals with these kinds of estimation and tracking problems and focuses on a class of simultaneous perturbation stochastic approximation (SPSA)-based consensus algorithms for the cases when the corrupted observations of sensors are transmitted between sensors with communication noise and the communication protocol has to satisfy a prespecified cost constraints on the network topology. Sufficient conditions are introduced to guarantee the stability of estimates obtained in this way, without resorting to commonly used but stringent conventional statistical assumptions about the observation noise, such as randomness, independence, and zero mean. We derive an upper bound of the mean square error of the estimates in the problem of unknown time-varying parameters tracking under unknown-but-bounded observation errors and noisy communication channels. The result is illustrated by a practical application to the multisensor multitarget tracking problem.

Язык оригиналаАнглийский
Номер статьи9198090
Страницы (с-по)3710-3717
Число страниц8
ЖурналIEEE Transactions on Automatic Control
Том66
Номер выпуска8
Дата раннего онлайн-доступа1 янв 2020
DOI
СостояниеОпубликовано - авг 2021

    Предметные области Scopus

  • Электротехника и электроника
  • Системотехника
  • Прикладные компьютерные науки

ID: 62841047