Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Few-shot learning is an important research field of machine learning in which a classifier must be trained in such a way that it can adapt to new classes which are not included in the training set. However, only small amounts of examples of each class are available for training. This is one of the key problems with learning algorithms of this type which leads to the significant uncertainty. We attack this problem via randomized stochastic approximation. In this paper, we suggest to consider the new multi-task loss function and propose the SPSA-like few-shot learning approach based on the prototypical networks method. We provide a theoretical justification and an analysis of experiments for this approach. The results of experiments on the benchmark dataset demonstrate that the proposed method is superior to the original prototypical networks.
Язык оригинала | английский |
---|---|
Название основной публикации | European Control Conference 2020, ECC 2020 |
Издатель | Institute of Electrical and Electronics Engineers Inc. |
Страницы | 350-355 |
Число страниц | 6 |
ISBN (электронное издание) | 9783907144015 |
ISBN (печатное издание) | 9783907144015 |
Состояние | Опубликовано - мая 2020 |
Событие | 19th European Control Conference, ECC 2020 - Russia, Saint Petersburg, Российская Федерация Продолжительность: 12 мая 2020 → 15 мая 2020 https://ecc20.eu/ |
Название | European Control Conference 2020, ECC 2020 |
---|
конференция | 19th European Control Conference, ECC 2020 |
---|---|
Сокращенное название | ECC |
Страна/Tерритория | Российская Федерация |
Город | Saint Petersburg |
Период | 12/05/20 → 15/05/20 |
Сайт в сети Internet |
ID: 62141876