Standard

Simple derivation of quasinormal modes for arbitrary spins. / Khriplovich, Iosif; Ruban, Gennady.

в: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Том 1, 013, 01.01.2005.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Khriplovich, I & Ruban, G 2005, 'Simple derivation of quasinormal modes for arbitrary spins', Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Том. 1, 013. https://doi.org/10.3842/SIGMA.2005.013

APA

Khriplovich, I., & Ruban, G. (2005). Simple derivation of quasinormal modes for arbitrary spins. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 1, [013]. https://doi.org/10.3842/SIGMA.2005.013

Vancouver

Khriplovich I, Ruban G. Simple derivation of quasinormal modes for arbitrary spins. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2005 Янв. 1;1. 013. https://doi.org/10.3842/SIGMA.2005.013

Author

Khriplovich, Iosif ; Ruban, Gennady. / Simple derivation of quasinormal modes for arbitrary spins. в: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2005 ; Том 1.

BibTeX

@article{8420607ec6674c6aaa2582001eb13ef7,
title = "Simple derivation of quasinormal modes for arbitrary spins",
abstract = "The asymptotically leading term of quasinormal modes (QNMs) in the Schwarzschild background, ωn= -in/2, is obtained in two straightforward analytical ways for arbitrary spins.",
keywords = "Quasinormal modes, Regge-wheeler equation",
author = "Iosif Khriplovich and Gennady Ruban",
year = "2005",
month = jan,
day = "1",
doi = "10.3842/SIGMA.2005.013",
language = "English",
volume = "1",
journal = "Symmetry, Integrability and Geometry - Methods and Applications",
issn = "1815-0659",
publisher = "Department of Applied Research, Institute of Mathematics of National Academy of Science of Ukraine",

}

RIS

TY - JOUR

T1 - Simple derivation of quasinormal modes for arbitrary spins

AU - Khriplovich, Iosif

AU - Ruban, Gennady

PY - 2005/1/1

Y1 - 2005/1/1

N2 - The asymptotically leading term of quasinormal modes (QNMs) in the Schwarzschild background, ωn= -in/2, is obtained in two straightforward analytical ways for arbitrary spins.

AB - The asymptotically leading term of quasinormal modes (QNMs) in the Schwarzschild background, ωn= -in/2, is obtained in two straightforward analytical ways for arbitrary spins.

KW - Quasinormal modes

KW - Regge-wheeler equation

UR - http://www.scopus.com/inward/record.url?scp=84889235737&partnerID=8YFLogxK

U2 - 10.3842/SIGMA.2005.013

DO - 10.3842/SIGMA.2005.013

M3 - Article

AN - SCOPUS:84889235737

VL - 1

JO - Symmetry, Integrability and Geometry - Methods and Applications

JF - Symmetry, Integrability and Geometry - Methods and Applications

SN - 1815-0659

M1 - 013

ER -

ID: 36642699