Standard

Similarity of Some Singular Operators to Self-Adjoint Ones. / Faddeev, M. M.; Shterenberg, R. G.

в: Journal of Mathematical Sciences, Том 115, № 2, 2003, стр. 2279-2286.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Faddeev, MM & Shterenberg, RG 2003, 'Similarity of Some Singular Operators to Self-Adjoint Ones', Journal of Mathematical Sciences, Том. 115, № 2, стр. 2279-2286. https://doi.org/10.1023/A:1022857409277

APA

Faddeev, M. M., & Shterenberg, R. G. (2003). Similarity of Some Singular Operators to Self-Adjoint Ones. Journal of Mathematical Sciences, 115(2), 2279-2286. https://doi.org/10.1023/A:1022857409277

Vancouver

Faddeev MM, Shterenberg RG. Similarity of Some Singular Operators to Self-Adjoint Ones. Journal of Mathematical Sciences. 2003;115(2):2279-2286. https://doi.org/10.1023/A:1022857409277

Author

Faddeev, M. M. ; Shterenberg, R. G. / Similarity of Some Singular Operators to Self-Adjoint Ones. в: Journal of Mathematical Sciences. 2003 ; Том 115, № 2. стр. 2279-2286.

BibTeX

@article{b7b2e0b6950f4f6d941a663165081d04,
title = "Similarity of Some Singular Operators to Self-Adjoint Ones",
abstract = "The singular differential operator Lf(x)=−sign xd2f(x)dx2+p(x)f(x) is studied. It is proved that if the second moment of p is finite and L has no nonreal eigenvalues, then L is similar to a self-adjoint operator. The proof is based on an integral resolvent criterion of similarity applied to a wide class of functions p(x). Bibliography: 20 titles.",
author = "Faddeev, {M. M.} and Shterenberg, {R. G.}",
year = "2003",
doi = "10.1023/A:1022857409277",
language = "English",
volume = "115",
pages = "2279--2286",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Similarity of Some Singular Operators to Self-Adjoint Ones

AU - Faddeev, M. M.

AU - Shterenberg, R. G.

PY - 2003

Y1 - 2003

N2 - The singular differential operator Lf(x)=−sign xd2f(x)dx2+p(x)f(x) is studied. It is proved that if the second moment of p is finite and L has no nonreal eigenvalues, then L is similar to a self-adjoint operator. The proof is based on an integral resolvent criterion of similarity applied to a wide class of functions p(x). Bibliography: 20 titles.

AB - The singular differential operator Lf(x)=−sign xd2f(x)dx2+p(x)f(x) is studied. It is proved that if the second moment of p is finite and L has no nonreal eigenvalues, then L is similar to a self-adjoint operator. The proof is based on an integral resolvent criterion of similarity applied to a wide class of functions p(x). Bibliography: 20 titles.

U2 - 10.1023/A:1022857409277

DO - 10.1023/A:1022857409277

M3 - Article

VL - 115

SP - 2279

EP - 2286

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 2

ER -

ID: 5499832