Standard

Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics. / Лобов, Арсений; Кучур , Полина; Боярская, Надежда Владимировна; Переплетчикова, Дарья ; Тараскин, Иван ; Ивашкин, Андрей ; Костина, Дарья ; Хворова, Ирина Александровна; Успенский, Владимир Евгеньевич; Репкин, Егор Алексеевич; Денисов, Евгений ; Геращенко , Татьяна ; Тихилов, Рашид; Божкова, Светлана; Карелкин, Виталий ; Wang, Chunli ; Xu, Kang ; Малашичева, Анна Борисовна.

в: GigaScience, Том 14, giae110, 06.01.2025.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Лобов, А, Кучур , П, Боярская, НВ, Переплетчикова, Д, Тараскин, И, Ивашкин, А, Костина, Д, Хворова, ИА, Успенский, ВЕ, Репкин, ЕА, Денисов, Е, Геращенко , Т, Тихилов, Р, Божкова, С, Карелкин, В, Wang, C, Xu, K & Малашичева, АБ 2025, 'Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics.', GigaScience, Том. 14, giae110. https://doi.org/10.1093/gigascience/giae110

APA

Лобов, А., Кучур , П., Боярская, Н. В., Переплетчикова, Д., Тараскин, И., Ивашкин, А., Костина, Д., Хворова, И. А., Успенский, В. Е., Репкин, Е. А., Денисов, Е., Геращенко , Т., Тихилов, Р., Божкова, С., Карелкин, В., Wang, C., Xu, K., & Малашичева, А. Б. (2025). Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics. GigaScience, 14, [giae110]. https://doi.org/10.1093/gigascience/giae110

Vancouver

Лобов А, Кучур П, Боярская НВ, Переплетчикова Д, Тараскин И, Ивашкин А и пр. Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics. GigaScience. 2025 Янв. 6;14. giae110. https://doi.org/10.1093/gigascience/giae110

Author

Лобов, Арсений ; Кучур , Полина ; Боярская, Надежда Владимировна ; Переплетчикова, Дарья ; Тараскин, Иван ; Ивашкин, Андрей ; Костина, Дарья ; Хворова, Ирина Александровна ; Успенский, Владимир Евгеньевич ; Репкин, Егор Алексеевич ; Денисов, Евгений ; Геращенко , Татьяна ; Тихилов, Рашид ; Божкова, Светлана ; Карелкин, Виталий ; Wang, Chunli ; Xu, Kang ; Малашичева, Анна Борисовна. / Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics. в: GigaScience. 2025 ; Том 14.

BibTeX

@article{5fa07c9ad72c47c7b566f25c2deea5bf,
title = "Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics.",
abstract = "Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.",
keywords = "Aortic Valve Stenosis/metabolism, Aortic Valve/cytology, Calcinosis/metabolism, Cell Differentiation, Cells, Cultured, Gene Expression Profiling/methods, Humans, Multiomics, Osteoblasts/metabolism, Osteogenesis/genetics, Proteome/metabolism, Proteomics/methods, Transcriptome",
author = "Арсений Лобов and Полина Кучур and Боярская, {Надежда Владимировна} and Дарья Переплетчикова and Иван Тараскин and Андрей Ивашкин and Дарья Костина and Хворова, {Ирина Александровна} and Успенский, {Владимир Евгеньевич} and Репкин, {Егор Алексеевич} and Евгений Денисов and Татьяна Геращенко and Рашид Тихилов and Светлана Божкова and Виталий Карелкин and Chunli Wang and Kang Xu and Малашичева, {Анна Борисовна}",
year = "2025",
month = jan,
day = "6",
doi = "10.1093/gigascience/giae110",
language = "English",
volume = "14",
journal = "GigaScience",
issn = "2047-217X",
publisher = "BioMed Central Ltd.",

}

RIS

TY - JOUR

T1 - Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics.

AU - Лобов, Арсений

AU - Кучур , Полина

AU - Боярская, Надежда Владимировна

AU - Переплетчикова, Дарья

AU - Тараскин, Иван

AU - Ивашкин, Андрей

AU - Костина, Дарья

AU - Хворова, Ирина Александровна

AU - Успенский, Владимир Евгеньевич

AU - Репкин, Егор Алексеевич

AU - Денисов, Евгений

AU - Геращенко , Татьяна

AU - Тихилов, Рашид

AU - Божкова, Светлана

AU - Карелкин, Виталий

AU - Wang, Chunli

AU - Xu, Kang

AU - Малашичева, Анна Борисовна

PY - 2025/1/6

Y1 - 2025/1/6

N2 - Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.

AB - Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.

KW - Aortic Valve Stenosis/metabolism

KW - Aortic Valve/cytology

KW - Calcinosis/metabolism

KW - Cell Differentiation

KW - Cells, Cultured

KW - Gene Expression Profiling/methods

KW - Humans

KW - Multiomics

KW - Osteoblasts/metabolism

KW - Osteogenesis/genetics

KW - Proteome/metabolism

KW - Proteomics/methods

KW - Transcriptome

U2 - 10.1093/gigascience/giae110

DO - 10.1093/gigascience/giae110

M3 - Article

C2 - 39798943

VL - 14

JO - GigaScience

JF - GigaScience

SN - 2047-217X

M1 - giae110

ER -

ID: 129632075