Standard

Sharpening Holder's inequality. / Hedenmalm, H.; Stolyarov, D. M.; Vasyunin, V. I.; Zatitskiy, P. B.

в: Journal of Functional Analysis, Том 275, № 5, 01.09.2018, стр. 1280-1319.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Hedenmalm, H, Stolyarov, DM, Vasyunin, VI & Zatitskiy, PB 2018, 'Sharpening Holder's inequality', Journal of Functional Analysis, Том. 275, № 5, стр. 1280-1319. https://doi.org/10.1016/j.jfa.2018.05.003

APA

Vancouver

Hedenmalm H, Stolyarov DM, Vasyunin VI, Zatitskiy PB. Sharpening Holder's inequality. Journal of Functional Analysis. 2018 Сент. 1;275(5):1280-1319. https://doi.org/10.1016/j.jfa.2018.05.003

Author

Hedenmalm, H. ; Stolyarov, D. M. ; Vasyunin, V. I. ; Zatitskiy, P. B. / Sharpening Holder's inequality. в: Journal of Functional Analysis. 2018 ; Том 275, № 5. стр. 1280-1319.

BibTeX

@article{a9b5376d6a0a412a93cec04ddce72428,
title = "Sharpening Holder's inequality",
abstract = "We strengthen H{\"o}lder's inequality. The new family of sharp inequalities we obtain might be thought of as an analog of the Pythagorean theorem for the Lp-spaces. Our treatment of the subject matter is based on Bellman functions of four variables.",
keywords = "H{\"o}lder's inequality, Pythagorean theorem, Sharpening, BELLMAN FUNCTION, EXTREMAL PROBLEMS, BMO, Holder's inequality",
author = "H. Hedenmalm and Stolyarov, {D. M.} and Vasyunin, {V. I.} and Zatitskiy, {P. B.}",
year = "2018",
month = sep,
day = "1",
doi = "10.1016/j.jfa.2018.05.003",
language = "English",
volume = "275",
pages = "1280--1319",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Elsevier",
number = "5",

}

RIS

TY - JOUR

T1 - Sharpening Holder's inequality

AU - Hedenmalm, H.

AU - Stolyarov, D. M.

AU - Vasyunin, V. I.

AU - Zatitskiy, P. B.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - We strengthen Hölder's inequality. The new family of sharp inequalities we obtain might be thought of as an analog of the Pythagorean theorem for the Lp-spaces. Our treatment of the subject matter is based on Bellman functions of four variables.

AB - We strengthen Hölder's inequality. The new family of sharp inequalities we obtain might be thought of as an analog of the Pythagorean theorem for the Lp-spaces. Our treatment of the subject matter is based on Bellman functions of four variables.

KW - Hölder's inequality

KW - Pythagorean theorem

KW - Sharpening

KW - BELLMAN FUNCTION

KW - EXTREMAL PROBLEMS

KW - BMO

KW - Holder's inequality

UR - http://www.scopus.com/inward/record.url?scp=85047084973&partnerID=8YFLogxK

U2 - 10.1016/j.jfa.2018.05.003

DO - 10.1016/j.jfa.2018.05.003

M3 - Article

AN - SCOPUS:85047084973

VL - 275

SP - 1280

EP - 1319

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 5

ER -

ID: 35958223