Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let σ > 0, and let G,B ∈ L(ℝ). This paper is devoted to approximation of convolution classes f = ϕ*G, ϕ ∈ Lp(ℝ), by a space SB that consists of functions of the form. Under some conditions on G and B, linear operators Xσ,G,B with values in SB are constructed for which ||f -Xσ,G,B(f)||p ≤ Kσ,G||ϕ||p. For p = 1,∞ the constant Kσ,G (it is an analog of the well-known Favard constant) cannot be reduced, even if one replaces the left-hand side by the best approximation by the space SB. The results of the paper generalize classical inequalities for approximations by entire functions of exponential type and by splines.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 841-867 |
Число страниц | 27 |
Журнал | St. Petersburg Mathematical Journal |
Том | 30 |
Номер выпуска | 5 |
DOI | |
Состояние | Опубликовано - 1 янв 2019 |
ID: 53406218