Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let σ > 0, and let G,B ∈ L(ℝ). This paper is devoted to approximation of convolution classes f = ϕ*G, ϕ ∈ Lp(ℝ), by a space SB that consists of functions of the form. Under some conditions on G and B, linear operators Xσ,G,B with values in SB are constructed for which ||f -Xσ,G,B(f)||p ≤ Kσ,G||ϕ||p. For p = 1,∞ the constant Kσ,G (it is an analog of the well-known Favard constant) cannot be reduced, even if one replaces the left-hand side by the best approximation by the space SB. The results of the paper generalize classical inequalities for approximations by entire functions of exponential type and by splines.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 841-867 |
| Число страниц | 27 |
| Журнал | St. Petersburg Mathematical Journal |
| Том | 30 |
| Номер выпуска | 5 |
| DOI | |
| Состояние | Опубликовано - 1 янв 2019 |
ID: 53406218