Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A bi-Hamiltonian structure and separation variables are found for a pair of integrable systems on the Poisson manifold with quadratic Hamiltonians and second integrals of motion that are third- and fourth-degree polynomials. The compatible Poisson bivectors are constructed on Poisson manifold in the class of quadratic Poisson tensors and the separation of variables for the corresponding bi-integrable systems possessing higher degree integrals of motion is discussed. The Poisson bivectors are degenerate and need a special reduction to integrate the equations of motions. It is more convenient to use the coordinates to obtain a more compact description of the corresponding integrable systems. Quadratic linear integrals of motion are found in bi-involution with respect to the Poisson bracket associated with the bivectors and with the quadratic linear tensor.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 839-842 |
Число страниц | 4 |
Журнал | Doklady Mathematics |
Том | 76 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - дек 2007 |
ID: 8484292