Standard

Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study : Dalton Transactions. / Konopkina, E.A.; Pozdeev, A.S.; Kalle, P.; Kirsanov, D.O.; Smol'yanov, N.A.; Kirsanova, A.A.; Kalmykov, S.N.; Petrov, V.G.; Borisova, N.E.; Matveev, P.I.

в: Dalton Transactions, Том 52, № 36, 08.08.2023, стр. 12934-12947.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Konopkina, E.A. ; Pozdeev, A.S. ; Kalle, P. ; Kirsanov, D.O. ; Smol'yanov, N.A. ; Kirsanova, A.A. ; Kalmykov, S.N. ; Petrov, V.G. ; Borisova, N.E. ; Matveev, P.I. / Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study : Dalton Transactions. в: Dalton Transactions. 2023 ; Том 52, № 36. стр. 12934-12947.

BibTeX

@article{5ea2f958ba16405d86373ee811f11bd1,
title = "Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study: Dalton Transactions",
abstract = "In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(ii), Ni(ii), Cu(ii), Zn(ii), Cd(ii), and Pb(ii) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(ii) and Pb(ii) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(ii) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(ii). The structure of the single crystal complex of Pb(ii) and Cd(ii) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(ii), Zn(ii), Cd(ii) and Pb(ii) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(ii) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(ii) cations, whereas such properties are absent in the case of Cd(ii) cations. {\textcopyright} 2023 The Royal Society of Chemistry.",
keywords = "Cadmium compounds, Cobalt compounds, Copper compounds, Crystal structure, Lead compounds, Nickel compounds, Positive ions, Potentiometers (electric measuring instruments), Pyridine, Single crystals, Solvent extraction, X ray powder diffraction, Zinc compounds, Complex formations, Diphosphonate, Extraction efficiencies, Hazardous metals, Heterocycles, Phenanthrolines, Phosphonates, Plasticized polymeric membranes, Potentiometric sensing, Theoretical study, Ligands",
author = "E.A. Konopkina and A.S. Pozdeev and P. Kalle and D.O. Kirsanov and N.A. Smol'yanov and A.A. Kirsanova and S.N. Kalmykov and V.G. Petrov and N.E. Borisova and P.I. Matveev",
note = "Export Date: 28 November 2023 CODEN: DTARA Адрес для корреспонденции: Konopkina, E.A.; Department of Chemistry, Russian Federation; эл. почта: konopkina.kate@gmail.com Сведения о финансировании: Russian Science Foundation, RSF, 21-73-20138, 23-73-30006 Текст о финансировании 1: The synthetic and extraction parts of this work were supported by the Russian Science Foundation (Grant no 21-73-20138). The complexation study of this work was supported by the Russian Science Foundation (Grant no 23-73-30006). ICP-MS measurments were carried out on equipment provided by the federal project “Development of infrastructure for scientific research and personnel training” of the national project “Science and Universities” of December 29, 2021 no 15/34. X-ray diffraction studies were performed at the Centre of Shared Equipment of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. The authors appreciate Dr Vyacheslav A. Chertkov for providing the Gaussian 16 program. Пристатейные ссылки: Yadav, M., Gupta, R., Arora, G., Yadav, P., Srivastava, A., Sharma, R.K., (2020) ACS Symposium Series, 1352. , and in American Chemical Society vol. pp. 41-;64; Ding, Q., Li, C., Wang, H., Xu, C., Kuang, H., (2021) Chem. Commun., 57, pp. 7215-7231. , 34223844; Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M.B., Williams, M.A., Yoshihara, T., (2020) J. Agric. Food Chem., 68, pp. 12856-12869. , 32155055; Ghaedi, M., Ahmadi, F., Shokrollahi, A., (2007) J. Hazard. Mater., 142, pp. 272-278. , 17011124; Liang, P., Liu, Y., Guo, L., Zeng, J., Lu, H., (2004) J. Anal. At. Spectrom., 19, pp. 1489-1492; Milne, A., Landing, W., Bizimis, M., Morton, P., (2010) Anal. Chim. Acta, 665, pp. 200-207. , 20417331; Jiang, Z.-T., Yu, J.C., Liu, H.-Y., (2005) Anal. Sci., 21, pp. 851-854. , 16038508; Zdrachek, E., Bakker, E., (2021) Anal. Chem., 93, pp. 72-102. , 33108168; Wan, H., Sun, Q., Zhao, H., Zhang, W., Cai, W., Wang, P., Kirsanov, D., Legin, A., (2013) Anal. Methods, 5, pp. 1823-1829; Wang, X., Lin, W., Chen, C., Kong, L., Huang, Z., Kirsanov, D., Legin, A., Wang, P., (2022) Sens. Actuators, B, 366, p. 131922; Lisak, G., (2021) Environ. Pollut., 289, p. 117882. , 34364114; Shimizu, F.M., Braunger, M.L., Riul, A., (2019) Chemosensors, 7, p. 36; Bakker, E., B{\"u}hlmann, P., Pretsch, E., (1999) Electroanalysis, 11, pp. 915-933; B{\"u}hlmann, P., Pretsch, E., Bakker, E., (1998) Chem. Rev., 98, pp. 1593-1688. , 11848943; Takeshita, K., Watanabe, K., Nakano, Y., Watanabe, M., (2003) Hydrometallurgy, 70, pp. 63-71; Alyapyshev, M., Babain, V., Borisova, N., Eliseev, I., Kirsanov, D., Kostin, A., Legin, A., Smirnova, Z., (2010) Polyhedron, 29, pp. 1998-2005; Legin, A.V., Babain, V.A., Kirsanov, D.O., Mednova, O.V., (2008) Sens. Actuators, B, 131, pp. 29-36; Xu, D., Katsu, T., (2000) Talanta, 51, pp. 365-371. , 18967868; Yang, X., Xu, L., Hao, Y., Meng, R., Zhang, X., Lei, L., Xiao, C., (2020) Inorg. Chem., 59, pp. 17453-17463. , 33216540; Matveev, P.I., Huang, P.W., Kirsanova, A.A., Ananyev, I.V., Sumyanova, T.B., Kharcheva, A.V., Khvorostinin, E.Y., Borisova, N.E., (2021) Inorg. Chem., 60, pp. 14563-14581. , 345434; Xu, L., Pu, N., Ye, G., Xu, C., Chen, J., Zhang, X., Lei, L., Xiao, C., (2020) Inorg. Chem. Front., 7, pp. 1726-1740; Xu, L., Hao, Y., Yang, X., Wang, Z., Xu, C., Borisova, N.E., Sun, M., Xiao, C., (2021) Chem. - Eur. J., 27, pp. 10717-10730. , 34002918; Borisova, N.E., Kharcheva, A.V., Patsaeva, S.V., Korotkov, L.A., Bakaev, S., Reshetova, M.D., Lyssenko, K.A., Myasoedov, B.F., (2017) Dalton Trans., 46, pp. 2238-2248. , 28128828; Yang, X., Wang, S., Xu, L., Yan, Q., Xu, C., Matveev, P., Lei, L., Xiao, C., (2022) Inorg. Chem. Front., 9, pp. 4671-4684; Yang, X., Xu, L., Zhang, A., Xiao, C., (2023) Chem. - Eur. J., p. e202300456. , 37013708; Matveev, P.I., Borisova, N.E., Andreadi, N.G., Zakirova, G.G., Petrov, V.G., Belova, E.V., Kalmykov, S.N., Myasoedov, B.F., (2019) Dalton Trans., 48, pp. 2554-2559. , 30693916; Konopkina, E.A., Matveev, P.I., Huang, P.-W., Kirsanova, A.A., Chernysheva, M.G., Sumyanova, T.B., Domnikov, K.S., Petrov, V.G., (2022) Dalton Trans., 51, pp. 11180-11192. , 35801576; Konopkina, E.A., Matveev, P.I., Kharcheva, A.V., Sumynova, T.B., Pozdeev, A.S., Novichkov, D.A., Trigub, A.L., Borisova, N.E., (2023) Solvent Extr. Ion Exch., 41, pp. 627-653; Sergentu, D.-C., Autschbach, J., (2022) Dalton Trans., 51, pp. 1754-1764. , 35022645; Lemport, P.S., Evsiunina, M.V., Nelyubina, Y.V., Isakovskaya, K.L., Khrustalev, V.N., Petrov, V.S., Pozdeev, A.S., Nenajdenko, V.G., (2021) Mendeleev Commun., 31, pp. 853-855; Gutorova, S.V., Matveev, P.I., Trigub, A.L., Lemport, P.S., Kalmykov, S.N., (2022) Crystallogr. Rep., 67, pp. 1152-1159; Heathman, C.R., Grimes, T.S., Jansone-Popova, S., Roy, S., Bryantsev, V.S., Zalupski, P.R., (2019) Chem. - Eur. J., 25, pp. 2545-2555. , 30444030; Ustynyuk, Y.A., Zhokhova, N.I., Gloriozov, I.P., Matveev, P.I., Evsiunina, M.V., Lemport, P.S., Pozdeev, A.S., Nenajdenko, V.G., (2022) Int. J. Mol. Sci., 23, p. 15538. , 36555179; Kov{\'a}cs, A., Apostolidis, C., Walter, O., (2019) Inorganics, 7, p. 26; Kirsanov, D.O., Mednova, O.V., Pol'shin, E.N., Legin, A.V., Alyapyshev, M.Y., Eliseev, I.I., Babain, V.A., Vlasov, Y.G., (2009) Russ. J. Appl. Chem., 82, pp. 247-254; Bakker, E., B{\"u}hlmann, P., Pretsch, E., (1997) Chem. Rev., 97, pp. 3083-3132. , 11851486; Bakker, E., Pretsch, E., B{\"u}hlmann, P., (2000) Anal. Chem., 72, pp. 1127-1133. , 10740849; Sheldrick, G.M., (2015) Acta Crystallogr., Sect. A: Found. Adv., 71, pp. 3-8. , 2557; Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H., (2009) J. Appl. Crystallogr., 42, pp. 339-341; Mardirossian, N., Head-Gordon, M., (2015) J. Chem. Phys., 142, p. 74111. , 25702006; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305. , 16240044; Cao, X., Dolg, M., Stoll, H., (2002) J. Chem. Phys., 118, pp. 487-496; Andrae, D., H{\"a}u{\ss}ermann, U., Dolg, M., Stoll, H., Preu{\ss}, H., (1990) Theor. Chim. Acta, 77, pp. 123-141; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, pp. 11623-11627; Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, pp. 6158-6170; Ehrlich, S., Moellmann, J., Reckien, W., Bredow, T., Grimme, S., (2011) ChemPhysChem, 12, pp. 3414-3420. , 220803; Stoll, H., Golka, E., Preu{\ss}, H., (1980) Theor. Chim. Acta, 55, pp. 29-41; Bannwarth, C., Grimme, S., (2014) Comput. Theor. Chem., 1040-1041, pp. 45-53; Grimme, S., (2006) J. Chem. Phys., 124, p. 34108. , 16438568; Tao, J., Perdew, J.P., Tang, H., Shahi, C., (2018) J. Chem. Phys., 148, p. 74110. , 29471641; Angeli, C., Bories, B., Cavallini, A., Cimiraglia, R., (2006) J. Chem. Phys., 124, p. 54108. , 16468852; Neese, F., (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 73-78; Tkachenko, N.V., Boldyrev, A.I., (2019) Phys. Chem. Chem. Phys., 21, pp. 9590-9596. , 31020963; Zubarev, D.Y., Boldyrev, A.I., (2008) Phys. Chem. Chem. Phys., 10, pp. 5207-5217. , 18728862; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2016); https://www.chemcraftprog.com, Chemcraft; Pearson, R.G., (1963) J. Am. Chem. Soc., 85, pp. 3533-3539; Bugaenko, L., Ryabyh, S., Bugaenko, A., (2008) Moscow Univ. Chem. Bull., 49, pp. 363-388; Li, H., Guo, F., Zhang, Z., Li, D., Wang, Z., (2006) J. Alloys Compd., 408-412, pp. 995-998; Binetin, S., Devillers, J., (1994) Chemosphere, 28, pp. 1171-1188; Albert, A., Goldacre, R., Phillips, J., (1948) J. Chem. Soc., pp. 2240-2249; Bakker, E., B{\"u}hlmann, P., Pretsch, E., (2004) Talanta, 63, pp. 3-20. , 18969400; Sokalski, T., Zwickl, T., Bakker, E., Pretsch, E., (1999) Anal. Chem., 71, pp. 1204-1209; Alyapyshev, M., Ashina, J., Dar'in, D., Kenf, E., Kirsanov, D., Tkachenko, L., Legin, A., Babain, V., (2016) RSC Adv., 6, pp. 68642-68652; Law, J.D., Brewer, K.N., Herbst, R.S., Todd, T.A., Wood, D.J., (1999) Waste Manage., 19, pp. 27-37; Khaydukova, M., Militsyn, D., Karnaukh, M., Gr{\"u}ner, B., Seluck{\'y}, P., Babain, V., Wilden, A., Legin, A., (2019) Chemosensors, 7, p. 41; Alyapyshev, M., Ashina, J., Dar'In, D., Kenf, E., Kirsanov, D., Tkachenko, L., Legin, A., Babain, V., (2016) RSC Adv., 6, pp. 68642-68652; Kirsanov, D.O., Borisova, N.E., Reshetova, M.D., Ivanov, A.V., Korotkov, L.A., Eliseev, I.I., Alyapyshev, M.Y., Babain, V.A., (2012) Russ. Chem. Bull., 61, pp. 881-890; Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C., (2016) Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 72, pp. 171-179. , 27048719; Caminiti, R., Cucca, P., Radnai, T., (1984) J. Phys. Chem., 88, pp. 2382-2386; Alkan, F., Small, T., Bai, S., Dominowski, A., Dybowski, C., (2016) J. Struct. Chem., 57, pp. 369-375; Mitrofanov, A., Andreadi, N., Matveev, P., Zakirova, G., Borisova, N., Kalmykov, S., Petrov, V., (2021) J. Mol. Liq., 325, p. 115098",
year = "2023",
month = aug,
day = "8",
doi = "10.1039/d3dt01534c",
language = "Английский",
volume = "52",
pages = "12934--12947",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "36",

}

RIS

TY - JOUR

T1 - Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study

T2 - Dalton Transactions

AU - Konopkina, E.A.

AU - Pozdeev, A.S.

AU - Kalle, P.

AU - Kirsanov, D.O.

AU - Smol'yanov, N.A.

AU - Kirsanova, A.A.

AU - Kalmykov, S.N.

AU - Petrov, V.G.

AU - Borisova, N.E.

AU - Matveev, P.I.

N1 - Export Date: 28 November 2023 CODEN: DTARA Адрес для корреспонденции: Konopkina, E.A.; Department of Chemistry, Russian Federation; эл. почта: konopkina.kate@gmail.com Сведения о финансировании: Russian Science Foundation, RSF, 21-73-20138, 23-73-30006 Текст о финансировании 1: The synthetic and extraction parts of this work were supported by the Russian Science Foundation (Grant no 21-73-20138). The complexation study of this work was supported by the Russian Science Foundation (Grant no 23-73-30006). ICP-MS measurments were carried out on equipment provided by the federal project “Development of infrastructure for scientific research and personnel training” of the national project “Science and Universities” of December 29, 2021 no 15/34. X-ray diffraction studies were performed at the Centre of Shared Equipment of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. The authors appreciate Dr Vyacheslav A. Chertkov for providing the Gaussian 16 program. Пристатейные ссылки: Yadav, M., Gupta, R., Arora, G., Yadav, P., Srivastava, A., Sharma, R.K., (2020) ACS Symposium Series, 1352. , and in American Chemical Society vol. pp. 41-;64; Ding, Q., Li, C., Wang, H., Xu, C., Kuang, H., (2021) Chem. Commun., 57, pp. 7215-7231. , 34223844; Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M.B., Williams, M.A., Yoshihara, T., (2020) J. Agric. Food Chem., 68, pp. 12856-12869. , 32155055; Ghaedi, M., Ahmadi, F., Shokrollahi, A., (2007) J. Hazard. Mater., 142, pp. 272-278. , 17011124; Liang, P., Liu, Y., Guo, L., Zeng, J., Lu, H., (2004) J. Anal. At. Spectrom., 19, pp. 1489-1492; Milne, A., Landing, W., Bizimis, M., Morton, P., (2010) Anal. Chim. Acta, 665, pp. 200-207. , 20417331; Jiang, Z.-T., Yu, J.C., Liu, H.-Y., (2005) Anal. Sci., 21, pp. 851-854. , 16038508; Zdrachek, E., Bakker, E., (2021) Anal. Chem., 93, pp. 72-102. , 33108168; Wan, H., Sun, Q., Zhao, H., Zhang, W., Cai, W., Wang, P., Kirsanov, D., Legin, A., (2013) Anal. Methods, 5, pp. 1823-1829; Wang, X., Lin, W., Chen, C., Kong, L., Huang, Z., Kirsanov, D., Legin, A., Wang, P., (2022) Sens. Actuators, B, 366, p. 131922; Lisak, G., (2021) Environ. Pollut., 289, p. 117882. , 34364114; Shimizu, F.M., Braunger, M.L., Riul, A., (2019) Chemosensors, 7, p. 36; Bakker, E., Bühlmann, P., Pretsch, E., (1999) Electroanalysis, 11, pp. 915-933; Bühlmann, P., Pretsch, E., Bakker, E., (1998) Chem. Rev., 98, pp. 1593-1688. , 11848943; Takeshita, K., Watanabe, K., Nakano, Y., Watanabe, M., (2003) Hydrometallurgy, 70, pp. 63-71; Alyapyshev, M., Babain, V., Borisova, N., Eliseev, I., Kirsanov, D., Kostin, A., Legin, A., Smirnova, Z., (2010) Polyhedron, 29, pp. 1998-2005; Legin, A.V., Babain, V.A., Kirsanov, D.O., Mednova, O.V., (2008) Sens. Actuators, B, 131, pp. 29-36; Xu, D., Katsu, T., (2000) Talanta, 51, pp. 365-371. , 18967868; Yang, X., Xu, L., Hao, Y., Meng, R., Zhang, X., Lei, L., Xiao, C., (2020) Inorg. Chem., 59, pp. 17453-17463. , 33216540; Matveev, P.I., Huang, P.W., Kirsanova, A.A., Ananyev, I.V., Sumyanova, T.B., Kharcheva, A.V., Khvorostinin, E.Y., Borisova, N.E., (2021) Inorg. Chem., 60, pp. 14563-14581. , 345434; Xu, L., Pu, N., Ye, G., Xu, C., Chen, J., Zhang, X., Lei, L., Xiao, C., (2020) Inorg. Chem. Front., 7, pp. 1726-1740; Xu, L., Hao, Y., Yang, X., Wang, Z., Xu, C., Borisova, N.E., Sun, M., Xiao, C., (2021) Chem. - Eur. J., 27, pp. 10717-10730. , 34002918; Borisova, N.E., Kharcheva, A.V., Patsaeva, S.V., Korotkov, L.A., Bakaev, S., Reshetova, M.D., Lyssenko, K.A., Myasoedov, B.F., (2017) Dalton Trans., 46, pp. 2238-2248. , 28128828; Yang, X., Wang, S., Xu, L., Yan, Q., Xu, C., Matveev, P., Lei, L., Xiao, C., (2022) Inorg. Chem. Front., 9, pp. 4671-4684; Yang, X., Xu, L., Zhang, A., Xiao, C., (2023) Chem. - Eur. J., p. e202300456. , 37013708; Matveev, P.I., Borisova, N.E., Andreadi, N.G., Zakirova, G.G., Petrov, V.G., Belova, E.V., Kalmykov, S.N., Myasoedov, B.F., (2019) Dalton Trans., 48, pp. 2554-2559. , 30693916; Konopkina, E.A., Matveev, P.I., Huang, P.-W., Kirsanova, A.A., Chernysheva, M.G., Sumyanova, T.B., Domnikov, K.S., Petrov, V.G., (2022) Dalton Trans., 51, pp. 11180-11192. , 35801576; Konopkina, E.A., Matveev, P.I., Kharcheva, A.V., Sumynova, T.B., Pozdeev, A.S., Novichkov, D.A., Trigub, A.L., Borisova, N.E., (2023) Solvent Extr. Ion Exch., 41, pp. 627-653; Sergentu, D.-C., Autschbach, J., (2022) Dalton Trans., 51, pp. 1754-1764. , 35022645; Lemport, P.S., Evsiunina, M.V., Nelyubina, Y.V., Isakovskaya, K.L., Khrustalev, V.N., Petrov, V.S., Pozdeev, A.S., Nenajdenko, V.G., (2021) Mendeleev Commun., 31, pp. 853-855; Gutorova, S.V., Matveev, P.I., Trigub, A.L., Lemport, P.S., Kalmykov, S.N., (2022) Crystallogr. Rep., 67, pp. 1152-1159; Heathman, C.R., Grimes, T.S., Jansone-Popova, S., Roy, S., Bryantsev, V.S., Zalupski, P.R., (2019) Chem. - Eur. J., 25, pp. 2545-2555. , 30444030; Ustynyuk, Y.A., Zhokhova, N.I., Gloriozov, I.P., Matveev, P.I., Evsiunina, M.V., Lemport, P.S., Pozdeev, A.S., Nenajdenko, V.G., (2022) Int. J. Mol. Sci., 23, p. 15538. , 36555179; Kovács, A., Apostolidis, C., Walter, O., (2019) Inorganics, 7, p. 26; Kirsanov, D.O., Mednova, O.V., Pol'shin, E.N., Legin, A.V., Alyapyshev, M.Y., Eliseev, I.I., Babain, V.A., Vlasov, Y.G., (2009) Russ. J. Appl. Chem., 82, pp. 247-254; Bakker, E., Bühlmann, P., Pretsch, E., (1997) Chem. Rev., 97, pp. 3083-3132. , 11851486; Bakker, E., Pretsch, E., Bühlmann, P., (2000) Anal. Chem., 72, pp. 1127-1133. , 10740849; Sheldrick, G.M., (2015) Acta Crystallogr., Sect. A: Found. Adv., 71, pp. 3-8. , 2557; Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H., (2009) J. Appl. Crystallogr., 42, pp. 339-341; Mardirossian, N., Head-Gordon, M., (2015) J. Chem. Phys., 142, p. 74111. , 25702006; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305. , 16240044; Cao, X., Dolg, M., Stoll, H., (2002) J. Chem. Phys., 118, pp. 487-496; Andrae, D., Häußermann, U., Dolg, M., Stoll, H., Preuß, H., (1990) Theor. Chim. Acta, 77, pp. 123-141; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, pp. 11623-11627; Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, pp. 6158-6170; Ehrlich, S., Moellmann, J., Reckien, W., Bredow, T., Grimme, S., (2011) ChemPhysChem, 12, pp. 3414-3420. , 220803; Stoll, H., Golka, E., Preuß, H., (1980) Theor. Chim. Acta, 55, pp. 29-41; Bannwarth, C., Grimme, S., (2014) Comput. Theor. Chem., 1040-1041, pp. 45-53; Grimme, S., (2006) J. Chem. Phys., 124, p. 34108. , 16438568; Tao, J., Perdew, J.P., Tang, H., Shahi, C., (2018) J. Chem. Phys., 148, p. 74110. , 29471641; Angeli, C., Bories, B., Cavallini, A., Cimiraglia, R., (2006) J. Chem. Phys., 124, p. 54108. , 16468852; Neese, F., (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 73-78; Tkachenko, N.V., Boldyrev, A.I., (2019) Phys. Chem. Chem. Phys., 21, pp. 9590-9596. , 31020963; Zubarev, D.Y., Boldyrev, A.I., (2008) Phys. Chem. Chem. Phys., 10, pp. 5207-5217. , 18728862; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2016); https://www.chemcraftprog.com, Chemcraft; Pearson, R.G., (1963) J. Am. Chem. Soc., 85, pp. 3533-3539; Bugaenko, L., Ryabyh, S., Bugaenko, A., (2008) Moscow Univ. Chem. Bull., 49, pp. 363-388; Li, H., Guo, F., Zhang, Z., Li, D., Wang, Z., (2006) J. Alloys Compd., 408-412, pp. 995-998; Binetin, S., Devillers, J., (1994) Chemosphere, 28, pp. 1171-1188; Albert, A., Goldacre, R., Phillips, J., (1948) J. Chem. Soc., pp. 2240-2249; Bakker, E., Bühlmann, P., Pretsch, E., (2004) Talanta, 63, pp. 3-20. , 18969400; Sokalski, T., Zwickl, T., Bakker, E., Pretsch, E., (1999) Anal. Chem., 71, pp. 1204-1209; Alyapyshev, M., Ashina, J., Dar'in, D., Kenf, E., Kirsanov, D., Tkachenko, L., Legin, A., Babain, V., (2016) RSC Adv., 6, pp. 68642-68652; Law, J.D., Brewer, K.N., Herbst, R.S., Todd, T.A., Wood, D.J., (1999) Waste Manage., 19, pp. 27-37; Khaydukova, M., Militsyn, D., Karnaukh, M., Grüner, B., Selucký, P., Babain, V., Wilden, A., Legin, A., (2019) Chemosensors, 7, p. 41; Alyapyshev, M., Ashina, J., Dar'In, D., Kenf, E., Kirsanov, D., Tkachenko, L., Legin, A., Babain, V., (2016) RSC Adv., 6, pp. 68642-68652; Kirsanov, D.O., Borisova, N.E., Reshetova, M.D., Ivanov, A.V., Korotkov, L.A., Eliseev, I.I., Alyapyshev, M.Y., Babain, V.A., (2012) Russ. Chem. Bull., 61, pp. 881-890; Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C., (2016) Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 72, pp. 171-179. , 27048719; Caminiti, R., Cucca, P., Radnai, T., (1984) J. Phys. Chem., 88, pp. 2382-2386; Alkan, F., Small, T., Bai, S., Dominowski, A., Dybowski, C., (2016) J. Struct. Chem., 57, pp. 369-375; Mitrofanov, A., Andreadi, N., Matveev, P., Zakirova, G., Borisova, N., Kalmykov, S., Petrov, V., (2021) J. Mol. Liq., 325, p. 115098

PY - 2023/8/8

Y1 - 2023/8/8

N2 - In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(ii), Ni(ii), Cu(ii), Zn(ii), Cd(ii), and Pb(ii) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(ii) and Pb(ii) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(ii) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(ii). The structure of the single crystal complex of Pb(ii) and Cd(ii) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(ii), Zn(ii), Cd(ii) and Pb(ii) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(ii) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(ii) cations, whereas such properties are absent in the case of Cd(ii) cations. © 2023 The Royal Society of Chemistry.

AB - In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(ii), Ni(ii), Cu(ii), Zn(ii), Cd(ii), and Pb(ii) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(ii) and Pb(ii) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(ii) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(ii). The structure of the single crystal complex of Pb(ii) and Cd(ii) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(ii), Zn(ii), Cd(ii) and Pb(ii) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(ii) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(ii) cations, whereas such properties are absent in the case of Cd(ii) cations. © 2023 The Royal Society of Chemistry.

KW - Cadmium compounds

KW - Cobalt compounds

KW - Copper compounds

KW - Crystal structure

KW - Lead compounds

KW - Nickel compounds

KW - Positive ions

KW - Potentiometers (electric measuring instruments)

KW - Pyridine

KW - Single crystals

KW - Solvent extraction

KW - X ray powder diffraction

KW - Zinc compounds

KW - Complex formations

KW - Diphosphonate

KW - Extraction efficiencies

KW - Hazardous metals

KW - Heterocycles

KW - Phenanthrolines

KW - Phosphonates

KW - Plasticized polymeric membranes

KW - Potentiometric sensing

KW - Theoretical study

KW - Ligands

UR - https://www.mendeley.com/catalogue/e3336a4d-9d3e-3cb7-91a5-a347d15e339b/

U2 - 10.1039/d3dt01534c

DO - 10.1039/d3dt01534c

M3 - статья

VL - 52

SP - 12934

EP - 12947

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 36

ER -

ID: 114408232