DOI

In this paper we introduce and study a new property of infinite words which is invariant under the action of a morphism: We say an infinite word x ∈ double-struck A defined over a finite alphabet double-struck A, is self-shuffling if x admits factorizations: x = Πi=1 Ui Vi = Πi=1 Ui = Πi=1 V i with Ui, Vi ∈ double-struck A +. In other words, there exists a shuffle of x with itself which reproduces x. The morphic image of any self-shuffling word is again self-shuffling. We prove that many important and well studied words are self-shuffling: This includes the Thue-Morse word and all Sturmian words (except those of the form aC where a ∈ {0,1} and C is a characteristic Sturmian word). We further establish a number of necessary conditions for a word to be self-shuffling, and show that certain other important words (including the paper-folding word and infinite Lyndon words) are not self-shuffling. In addition to its morphic invariance, which can be used to show that one word is not the morphic image of another, this new notion has other unexpected applications: For instance, as a consequence of our characterization of self-shuffling Sturmian words, we recover a number theoretic result, originally due to Yasutomi, which characterizes pure morphic Sturmian words in the orbit of the characteristic.

Язык оригиналаанглийский
Название основной публикацииAutomata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Proceedings
Страницы113-124
Число страниц12
ИзданиеPART 2
DOI
СостояниеОпубликовано - 23 июл 2013
Событие40th International Colloquium on Automata, Languages, and Programming, ICALP 2013 - Riga, Латвия
Продолжительность: 8 июл 201312 июл 2013

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
НомерPART 2
Том7966 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция40th International Colloquium on Automata, Languages, and Programming, ICALP 2013
Страна/TерриторияЛатвия
ГородRiga
Период8/07/1312/07/13

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 41130526