Standard

Second order Killing tensors related to symmetric spaces. / Цыганов, Андрей Владимирович; Порубов, Евгений Олегович.

в: Journal of Geometry and Physics, Том 91, 104911, 09.2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{3327e1dd5ab0476db101dd26a2489293,
title = "Second order Killing tensors related to symmetric spaces",
abstract = "We discuss the pairs of quadratic integrals of motion belonging to the n-dimensional space of independent integrals of motion in involution, that provide integrability of the corresponding Hamiltonian equations of motion by quadratures. In contrast to the Eisenhart theory, additional integrals of motion are polynomials of the fourth, sixth and other orders in momenta. The main focus is on the second-order Killing tensors corresponding to quadratic integrals of motion and relating to the special combinations of rotations and translations in Euclidean space.",
keywords = "Integrable systems, Killing tensors, Symmetric spaces",
author = "Цыганов, {Андрей Владимирович} and Порубов, {Евгений Олегович}",
year = "2023",
month = sep,
doi = "10.1016/j.geomphys.2023.104911",
language = "English",
volume = "91",
journal = "Journal of Geometry and Physics",
issn = "0393-0440",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Second order Killing tensors related to symmetric spaces

AU - Цыганов, Андрей Владимирович

AU - Порубов, Евгений Олегович

PY - 2023/9

Y1 - 2023/9

N2 - We discuss the pairs of quadratic integrals of motion belonging to the n-dimensional space of independent integrals of motion in involution, that provide integrability of the corresponding Hamiltonian equations of motion by quadratures. In contrast to the Eisenhart theory, additional integrals of motion are polynomials of the fourth, sixth and other orders in momenta. The main focus is on the second-order Killing tensors corresponding to quadratic integrals of motion and relating to the special combinations of rotations and translations in Euclidean space.

AB - We discuss the pairs of quadratic integrals of motion belonging to the n-dimensional space of independent integrals of motion in involution, that provide integrability of the corresponding Hamiltonian equations of motion by quadratures. In contrast to the Eisenhart theory, additional integrals of motion are polynomials of the fourth, sixth and other orders in momenta. The main focus is on the second-order Killing tensors corresponding to quadratic integrals of motion and relating to the special combinations of rotations and translations in Euclidean space.

KW - Integrable systems

KW - Killing tensors

KW - Symmetric spaces

UR - https://www.mendeley.com/catalogue/49872e43-54c6-32a6-8599-dc54decc0ee7/

U2 - 10.1016/j.geomphys.2023.104911

DO - 10.1016/j.geomphys.2023.104911

M3 - Article

VL - 91

JO - Journal of Geometry and Physics

JF - Journal of Geometry and Physics

SN - 0393-0440

M1 - 104911

ER -

ID: 106832870