DOI

Many differential equations of Dynamics (i.e. Celestial Mechanics, Molecular Dynamics, and so on) one can reduce to polynomial form, i.e. to system of differential equations with polynomial (in unknowns) right-hand sides. It implies that at every step of numerical integration of these equations, one needs to evaluate many different multivariate monomials for many values of variables, and that is why minimizing the evaluation cost of a system of monomials in the right-hand sides is an important problem. We consider a scheme of successive multiplications minimizing the total cost of evaluation of multivariate monomials of a system of monomials and the algorithm, which for a given system of third order monomials reduces the original problem to the linear programming problem, and computes such a scheme. It implies that to speed up the process of numerical integration it is natural to minimize the total cost of evaluation of all different monomials in right-hand sides of the differential equations. It turns out that the total evaluation cost of systems of monomials is reduced substantially.

Язык оригиналаанглийский
Название основной публикацииInternational Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017
РедакторыCharalambos Tsitouras, Theodore Simos, Theodore Simos, Theodore Simos, Theodore Simos, Theodore Simos
ИздательAmerican Institute of Physics
ISBN (электронное издание)9780735416901
DOI
СостояниеОпубликовано - 10 июл 2018
Событие15th International Conference of Numerical Analysis and Applied Mathematics - о.Родос, Thessaloniki, Греция
Продолжительность: 25 сен 201730 сен 2017

Серия публикаций

НазваниеAIP Conference Proceedings
Том1978
ISSN (печатное издание)0094-243X
ISSN (электронное издание)1551-7616

конференция

конференция15th International Conference of Numerical Analysis and Applied Mathematics
Сокращенное названиеICNAAM 2017
Страна/TерриторияГреция
ГородThessaloniki
Период25/09/1730/09/17

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 73213950