Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
Scattering on periodic metric graphs. / Korotyaev, Evgeny; Сабурова, Наталья.
в: Reviews in Mathematical Physics, Том 32, № 8, 2050024, 01.09.2020.Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
}
TY - JOUR
T1 - Scattering on periodic metric graphs
AU - Korotyaev, Evgeny
AU - Сабурова, Наталья
N1 - Funding Information: Evgeny Korotyaev was supported by the RSF grant No. 18-11-00032. Natalia Saburova was supported by the RFBR grant No. 19-01-00094. Publisher Copyright: © 2020 World Scientific Publishing Company. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman-Krein identity.
AB - We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman-Krein identity.
KW - Direct integral
KW - Fredholm determinant
KW - metric Laplacian
KW - periodic metric graph
KW - scattering
KW - Schrödinger operators
KW - DISCRETE SCHRODINGER-OPERATORS
KW - THEOREM
KW - POTENTIALS
KW - SPECTRAL PROPERTIES
KW - SELF-ADJOINT EXTENSIONS
KW - LAPLACIAN
KW - Schrodinger operators
UR - http://www.scopus.com/inward/record.url?scp=85091424798&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/e60f6b9a-4b6d-3ef7-a4a9-ab6c286461d8/
U2 - 10.1142/S0129055X20500245
DO - 10.1142/S0129055X20500245
M3 - Review article
AN - SCOPUS:85091424798
VL - 32
JO - Reviews in Mathematical Physics
JF - Reviews in Mathematical Physics
SN - 0129-055X
IS - 8
M1 - 2050024
ER -
ID: 70062487