DOI

We consider satisfiable Tseitin formulas TSG,c based on d-regular expanders G with the absolute value of the second largest eigenvalue less than d3 . We prove that any nondeterministic read-once branching program (1-NBP) representing TSG,c has size 2(n), where n is the number of vertices in G. It extends the recent result by Itsykson at el. [9] from OBDD to 1-NBP. On the other hand it is easy to see that TSG,c can be represented as a read-2 branching program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program (1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TSG,c gives the best possible separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP and between 1-NBP and CNF.

Язык оригиналаанглийский
Название основной публикации42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017
РедакторыKim G. Larsen, Jean-Francois Raskin, Hans L. Bodlaender
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (электронное издание)9783959770460
DOI
СостояниеОпубликовано - 1 ноя 2017
Событие42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017 - Aalborg, Дания
Продолжительность: 21 авг 201725 авг 2017

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том83
ISSN (печатное издание)1868-8969

конференция

конференция42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017
Страна/TерриторияДания
ГородAalborg
Период21/08/1725/08/17

    Предметные области Scopus

  • Программный продукт

ID: 49785281