Ссылки

DOI

Finding exact circuit size is notoriously hard. Whereas modern computers and algorithmic techniques allow to find a circuit of size seven in the blink of an eye, it may take more than a week to search for a circuit of size thirteen. One of the reasons of this behavior is that the search space is enormous: the number of circuits of size s is sΘ(s), the number of Boolean functions on n variables is 22n. In this paper, we explore the following natural heuristic idea for decreasing the size of a given circuit: go through all its subcircuits of moderate size and check whether any of them can be improved by reducing to SAT. This may be viewed as a local search approach: we search for a smaller circuit in a ball around a given circuit. Through this approach, we prove new upper bounds on the circuit size of various symmetric functions. We also demonstrate that some upper bounds that were proved by hand decades ago, can nowadays be found automatically in a few seconds.

Язык оригиналаанглийский
Название основной публикации47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022
РедакторыStefan Szeider, Robert Ganian, Alexandra Silva
Место публикацииDagstuhl, Germany
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Число страниц15
ISBN (электронное издание)978-3-95977-256-3
ISBN (печатное издание)9783959772563
DOI
СостояниеОпубликовано - 1 авг 2022
Событие47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022 - Vienna, Австрия
Продолжительность: 22 авг 202226 авг 2022
https://www.ac.tuwien.ac.at/mfcs2022/

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том241
ISSN (печатное издание)1868-8969

конференция

конференция47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022
Страна/TерриторияАвстрия
ГородVienna
Период22/08/2226/08/22
Сайт в сети Internet

    Предметные области Scopus

  • Программный продукт

ID: 98049855