DOI

Let μ be an even measure on the real line R such that c1 R |f |2 dx R |f |2 dμ c2 R |f |2 dx for all functions f in the Paley–Wiener space PWa. We prove that μ is the spectral measure for the unique Hamiltonian H = w 0 w 01 on [0, a] generated by a weight w from the Muckenhoupt class A2[0, a]. As a consequence of this result, we construct Krein’s orthogonal entire functions with respect to μ and prove that every positive, bounded, invertible Wiener–Hopf operator on [0, a] with real symbol admits triangular factorization.

Язык оригиналаанглийский
Страницы (с-по)3744-3768
Число страниц25
ЖурналInternational Mathematics Research Notices
Том2018
Номер выпуска12
DOI
СостояниеОпубликовано - 1 июн 2018

    Предметные области Scopus

  • Математика (все)

ID: 36320737