Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Automatic crash reporting systems have become a de-facto standard in software development. These systems monitor target software, and if a crash occurs they send details to a backend application. Later on, these reports are aggregated and used in the development process to 1) understand whether it is a new or an existing issue, 2) assign these bugs to appropriate developers, and 3) gain a general overview of the application's bug landscape. The efficiency of report aggregation and subsequent operations heavily depends on the quality of the report similarity metric. However, a distinctive feature of this kind of report is that no textual input from the user (i.e., bug description) is available: it contains only stack trace information.In this paper, we present S3M ("extreme") - the first approach to computing stack trace similarity based on deep learning. It is based on a siamese architecture that uses a biLSTM encoder and a fully-connected classifier to compute similarity. Our experiments demonstrate the superiority of our approach over the state-of-the-art on both open-sourced data and a private JetBrains dataset. Additionally, we review the impact of stack trace trimming on the quality of the results.
Язык оригинала | английский |
---|---|
Название основной публикации | 2021 IEEE/ACM 18th International Conference on Mining Software Repositories, MSR 2021 |
Подзаголовок основной публикации | Proceedings |
Издатель | Institute of Electrical and Electronics Engineers Inc. |
Страницы | 266-270 |
Число страниц | 5 |
ISBN (электронное издание) | 9781728187105 |
ISBN (печатное издание) | 978-1-6654-2985-6 |
DOI | |
Состояние | Опубликовано - мая 2021 |
Событие | 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021 - Virtual, Online Продолжительность: 17 мая 2021 → 19 мая 2021 |
Название | IEEE International Working Conference on Mining Software Repositories |
---|---|
Издатель | IEEE COMPUTER SOC |
ISSN (печатное издание) | 2160-1852 |
конференция | 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021 |
---|---|
Город | Virtual, Online |
Период | 17/05/21 → 19/05/21 |
ID: 86503185