DOI

We prove that a Finsler metric is nonpositively curved in the sense of Busemann if and only if it is affinely equivalent to a Riemannian metric of nonpositive sectional curvature. In other terms, such Finsler metrics are precisely Berwald metrics of nonpositive flag curvature. In particular in dimension 2 every such metric is Riemannian or locally isometric to that of a normed plane. In the course of the proof we obtain new characterizations of Berwald metrics in terms of the so-called linear parallel transport.
Язык оригиналаанглийский
Страницы (с-по)855-868
ЖурналCommentarii Mathematici Helvetici
Том94
Номер выпуска4
DOI
СостояниеОпубликовано - 18 дек 2019
Опубликовано для внешнего пользованияДа

ID: 49986724