Standard

Review: nanoSPD-produced metallic materials for advanced medical devices. / Valiev, R.Z.; Zheng, Y.; Edalati, K.

в: Journal of Materials Science, Том 59, № 14, 28.02.2024, стр. 5681-5697.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Valiev, RZ, Zheng, Y & Edalati, K 2024, 'Review: nanoSPD-produced metallic materials for advanced medical devices', Journal of Materials Science, Том. 59, № 14, стр. 5681-5697. https://doi.org/10.1007/s10853-024-09464-0

APA

Valiev, R. Z., Zheng, Y., & Edalati, K. (2024). Review: nanoSPD-produced metallic materials for advanced medical devices. Journal of Materials Science, 59(14), 5681-5697. https://doi.org/10.1007/s10853-024-09464-0

Vancouver

Valiev RZ, Zheng Y, Edalati K. Review: nanoSPD-produced metallic materials for advanced medical devices. Journal of Materials Science. 2024 Февр. 28;59(14):5681-5697. https://doi.org/10.1007/s10853-024-09464-0

Author

Valiev, R.Z. ; Zheng, Y. ; Edalati, K. / Review: nanoSPD-produced metallic materials for advanced medical devices. в: Journal of Materials Science. 2024 ; Том 59, № 14. стр. 5681-5697.

BibTeX

@article{051f3b6b77f1445ab0e4a29597fd2f51,
title = "Review: nanoSPD-produced metallic materials for advanced medical devices",
abstract = "Presently, special metallic materials (titanium and a number of its alloys, stainless steels, magnesium alloys, etc.) are extensively used for the manufacturing of many medical tools and devices and choosing the appropriate material is of vital importance as it determines the success and safety of the medical devices for their application. Recent years witnessed active research and development to improve the mechanical and functional properties of these biomaterials using their nanostructuring by means of severe plastic deformation (SPD) techniques. The specific nanostructural features induced by SPD processing in metallic biomaterials significantly contribute to their performance, which has been evidenced in a series of investigative activities conducted lately to improve existing metallic biomaterials and explore potential for their production capability. This paper presents a review of these works and considers the scientific principles of achieving a higher level of properties in the metallic biomaterials as well as related challenges and uncertainties, which forms the basis for the production of a new generation of medical implants with improved design and increased biofunctionality. {\textcopyright} The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.",
author = "R.Z. Valiev and Y. Zheng and K. Edalati",
note = "Export Date: 11 March 2024 CODEN: JMTSA Адрес для корреспонденции: Valiev, R.Z.; Ufa University of Science and Technology, 32 Zaki Validi str., Russian Federation; эл. почта: ruslan.valiev@ugatu.su Сведения о финансировании: Russian Science Foundation, RSF, 075-15-2022-1114, 22-19-00445 Текст о финансировании 1: Author (RZV) acknowledges the support in part from Russian Science Foundation (Grant No. 22-19-00445) and in part the Megagrant State Program (agreement 075-15-2022-1114 dated by 30 June 2022). Пристатейные ссылки: Valiev, R.Z., Straumal, B., Langdon, T.G., Using severe plastic deformation to produce nanostructured materials with superior properties (2022) Ann Rev Mater Res, 52, pp. 357-382. , 2022AnRMS.52.357V, 1:CAS:528:DC%2BB38XhtFCru73I; Edalati, K., Bachmaier, A., Beloshenko, V.A., Nanomaterials by severe plastic deformation: review of historical developments and recent advances (2022) Mater Res Lett, 10 (4), pp. 163-256. , 1:CAS:528:DC%2BB38Xkt1eisb4%3D; Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., Fundmentals of superior properties in bulk nanoSPD materials (2016) Mater Res Lett, 4 (1), pp. 1-21. , 1:CAS:528:DC%2BC28Xoslegt7k%3D; Lowe, T.C., Valiev, R.Z., Frontiers of bulk nanostructured metals in biomedical applications (2014) Advanced biomaterials and biodevices, pp. 3-52. , Tiwari A., Nordin A.N., (eds), USA, Wiley-Scrivener Publ; Floriano, R., Edalati, K., Effects of severe plastic deformation on advanced biomaterials for biomedical applications: a brief overview (2023) Mater Trans, 64, pp. 1673-1682. , 1:CAS:528:DC%2BB2cXpvVSltg%3D%3D; Valiev, R.Z., Parfenov, E.V., Parfenova, L.V., Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality (2019) Mater Trans, 60, pp. 1356-1366. , 1:CAS:528:DC%2BC1MXitVyqtLnO; Hanawa, T., (2010) Metals for biomedical devices, , Oxford, Woodhead Publishing Limited; Zheng, Y.F., Gu, X.N., Witte, A., (2014) Biodegradable metals Mater Sci Eng R, 77, pp. 1-43; Froes, F.H., Qian, M., (2018) Titanium in Medical and dental applications, , Duxford, Woodhead Publishing; Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., (2003) Titanium in medicine, , Berlin, Springer-Verlag; Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V., Bulk nanostructured materials from severe plastic deformation (2000) Prog Mater Sci, 45, pp. 103-189. , 1:CAS:528:DC%2BD3cXptFClsw%3D%3D; Valiev, R.Z., Semenova, I.P., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Sochova, J., Nanostructured titanium for biomedical applications (2008) Adv Eng Mater, 10, pp. B15-B17. , 1:CAS:528:DC%2BD1cXhtFOnu7%2FO; Valiev, R.Z., Sabirov, I., Zemtsova, E.G., Parfenov, E.V., Dluho{\v s}, L., Lowe, T.C., (2018) Titanium in medical and dental applications, pp. 393-418. , Froes F., Qian M., (eds), Duxford, Woodhead Publishing; Gunderov, D.V., Polyakov, A.V., Semenova, I.P., Raab, G.I., Churakova, A.A., Gimaltdinova, E.I., Sabirov, I., Valiev, R.Z., Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing (2013) Mater Sci Eng A, 562, pp. 128-136. , 1:CAS:528:DC%2BC3sXntlGrtA%3D%3D; Valiev, R.Z., Nanostructural design of superstrong metallic materials by severe plastic deformation processing (2023) Microstruct, 3, p. 2023004. , 1:CAS:528:DC%2BB3sXhvVyjt77K; Faghihi, S., Azari, F., Zhilyaev, A.P., Szpunar, J.A., Vali, H., Tabrizian, M., Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion (2007) Biomater, 28, pp. 3887-3895. , 1:CAS:528:DC%2BD2sXns1KmsL4%3D; Estrin, Y., Ivanova, E.P., Michalska, A., Truong, V.K., Lapovok, R., Boyd, R., Accelerated stem cell attachment to ultrafine grained titanium (2011) Acta Biomater, 7, pp. 900-906. , 1:CAS:528:DC%2BC3MXhsF2msA%3D%3D, 20887818; Nie, F.L., Zheng, Y.F., Wei, S.C., Wang, D.S., Yu, Z.T., Salimgareeva, G.K., Polyakov, A.V., Valiev, R.Z., In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control (2013) J Biomed Mater Res, 101A, pp. 1694-1707. , 1:CAS:528:DC%2BC3sXlslygs7w%3D; Matchin, A.A., Nosov, E.V., Stadnikov, A.A., Klevtsov, G.V., Rezyapova, L.R., Sayapina, N.A., Blinova, E.V., Valiev, R.Z., In vivo studies of medical implants for maxillofacial surgery produced from nanostructured titanium (2023) ACS Biomater Sci Eng, 9 (11), pp. 6138-6145. , 1:CAS:528:DC%2BB3sXitVKntbfL, 37803938; Estrin, Y., Lapovok, R., Medvedev, A.E., Kasper, C., Ivanova, E., Lowe, T.C., Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation (2018) Titanium in medical and dental applications, pp. 419-454. , Froes F., Qian M., (eds), Duxford, Woodhead Publishing; Semenova, I., Yakushina, E., Nurgaleeva, V., Valiev, R., Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties (2009) Int J Mat Res, 100, pp. 1691-1696. , 1:CAS:528:DC%2BC3cXhvFSjtLw%3D; Saitova, L., Hoeppel, H.W., Goeken, M., Semenova, I.P., Valiev, R.Z., Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use (2009) Int J Fatig, 31, pp. 322-331. , 1:CAS:528:DC%2BD1cXhsVSgtrbN; Semenova, I.P., Saitova, L.R., Raab, G.I., Korshunov, A.I., Zhu, Y.T., Lowe, T.C., Valiev, R.Z., Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation (2006) Mater Sci Forum, 503-504, pp. 757-762; Str{\'a}sk{\'y}, J., Janeĉek, M., Semenova, I., {\v C}{\'i}{\v z}ek, J., Bartha, K., Harcuba, P., Polyakova, V., Gatina, S., Microstructure and lattice defects in ultrafine grained biomedical α+β and metastable β Ti alloys (2018) Titanium in medical and dental applications, pp. 455-475. , Froes F., Qian M., (eds), Duxford, UK, Woodhead Publishing; Niinomi, M., Mechanical biocompatibilities of titanium alloys for biomedical applications (2008) J Mech Behav Biomed Mater, 1, pp. 30-42. , 19627769; Niinomi, M., Nakai, M., Hieda, J., Development of new metallic alloys for biomedical applications (2012) Acta Biomater, 8, pp. 3888-3903. , 1:CAS:528:DC%2BC38XhsVCitr%2FI, 22765961; Jorge, A.M., Jr., Roche, V., P{\'e}rez, D.A.G., Valiev, R.Z., Nanostructuring Ti-alloys by HPT: phase transformation, mechanical and corrosion properties and bioactivation (2023) Mater Trans, 64, pp. 1306-1316. , 1:CAS:528:DC%2BB3sXit1Oqu7rN; Xu, W., Wu, X., Figueiredo, R.B., Stoica, M., Calin, M., Eckert, J., Langdon, T.G., Xia, K., Nanocrystalline body-centered cubic beta-titanium alloy processed by high-pressure torsion (2009) Int J Mater Res, 100, pp. 1662-1667. , 1:CAS:528:DC%2BC3cXhvFSjt7k%3D; Yilmazer, H., Niinomi, M., Nakai, M., Cho, K., Hieda, J., Todaka, Y., Miyazaki, T., Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion (2013) Mater Sci Eng C, 33, pp. 2499-2507. , 1:CAS:528:DC%2BC3sXktFaru7g%3D; Zafari, A., Wei, X., Xu, W., Xia, K., Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: the role played by stress induced martensitic transformation (2015) Acta Mater, 97, pp. 146-155. , 2015AcMat.97.146Z, 1:CAS:528:DC%2BC2MXhtFKisLvE; Kazarinov, N., Stotskiy, A., Polyakov, A., Valiev, R.Z., Enikeev, N., Finite element modeling for virtual design to miniaturize medical implants manufactured of nanostructured titanium with enhanced mechanical performance (2022) Materials, 15, p. 7417. , 2022Mate..15.7417K, 1:CAS:528:DC%2BB38XivVKrt7bJ, 36363009, 9658747; Semenova, I.P., Klevtsov, G.V., Klevtsova, N.A., Dyakonov, G., Matchin, A.A., Valiev, R.Z., Nanostructured titanium for maxillofacial mini-implants (2016) Adv Eng Mater, 18, pp. 1216-1224. , 1:CAS:528:DC%2BC28XhtFOjt7bJ; ISO 14602 Non-active surgical implants-Implants for Osteosynthesis particular requirements; http://www.instron.com/en/testing-solutions/by-test-type/simple-cyclic/orthopedic-micro-implants; Virtanen, S., Biodegradable Mg and Mg alloys: corrosion and biocompatibility (2011) Mater Sci Eng B, 176, pp. 1600-1608. , 1:CAS:528:DC%2BC3MXhtlykurbL; Lafont, A., Yang, Y., Magnesium stent scaffolds: DREAMS become reality (2016) Lancet, 387, pp. 3-4. , 10013, 26560250; Zheng, Y., (2016) Magnesium alloys as degradable biomaterials., , CRC Press, Taylor & Francis Group, Boca Raton, FL; Haenzi, A.C., Sologubenko, A.S., Uggowitzer, P.J., Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications (2009) Int J Mater Res, 100, pp. 1127-1136. , 1:CAS:528:DC%2BD1MXhtFOgtr3N; Witte, F., Hort, N., Feyerabend, F., Vogt, C., Magnesium Corrosion: A challenging concept for degradable implants (2011) Corrosion of Magnesium Alloys. (Ed) Song G, Woodhead, Philadelphia, Pp., pp. 403-425; Dobatkin, S.V., Lukyanova, E.A., Martynenko, N.S., Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation (2017) IOP Conf Ser: Mater Sci Eng, 194. , 1:CAS:528:DC%2BC1cXkvVektL0%3D; Li, W.T., Liu, X., Zheng, Y.F., In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion (2020) Biomater Sci, 8, pp. 5071-5087. , 1:CAS:528:DC%2BB3cXhsVKrsrfO, 32812545; Vinogradov, A., Merson, E., Myagkikh, P., Linderov, M., Brilevsky, A., Merson, D., Attaining high functional performance in biodegradable Mg alloys: an overview of challenges and prospects for the Mg–Zn–Ca system (2023) Materials, 16 (3), p. 1324. , 2023Mate..16.1324V, 1:CAS:528:DC%2BB3sXjtFGmu7o%3D, 36770330, 9920771; Carvalho, A.P., Figueiredo, R.B., An overview of the effect of grain size on mechanical properties of magnesium and its alloys (2023) Mater Trans, 64, pp. 1272-1283. , 1:CAS:528:DC%2BB3sXit1Oqu73M; Krzysztof, B., Jelena, H., Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview (2023) Mater Trans, 64, pp. 1709-1723; Sun, W.T., Qiao, X.G., Zheng, M.Y., Xu, C., Kamado, S., Altered Aging behavior of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion (2018) Acta Mater, 151, pp. 260-270. , 2018AcMat.151.260S, 1:CAS:528:DC%2BC1cXnsFSqtLk%3D; Khan, A.R., Grewal, N.S., Zhou, C., Kunshan, Y., Zhang, H.J., Jun, Я., Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses (2023) Results Eng, 20. , 1:CAS:528:DC%2BB3sXit1SltbfF; Wang, H., Estrin, Y., Fu, H., Song, G., Zuberova, Z., The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31 (2007) Adv Eng Mater, 9, pp. 967-972; Hadzima, B., (2008) Nanomaterials by severe plastic deformation IV, Pts 1 and 2, pp. 994-999. , Estrin Y., Maier H.J., (eds), Germany, Trans Tech Publications, Goslar; Minarik, P., Kral, R., Janecek, M., Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys (2013) Appl Surf Sci, 281, pp. 44-48. , 2013ApSS.281..44M, 1:CAS:528:DC%2BC3sXmvV2hsQ%3D%3D; Parfenov, E.V., Kulyasova, O.B., Mukaeva, V.R., Influence of ultra-fine grain structure on corrosion behavior of biodegradable Mg-1Ca alloy (2020) Corros Sci, 163. , 1:CAS:528:DC%2BC1MXitFSjt7fP; Kutniy, K.V., Papirov, I.I., Tikhonovsky, M.A., Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants (2009) Mater Und Werkst, 40, pp. 242-246. , 1:CAS:528:DC%2BD1MXmtl2nsrc%3D; Pachla, W., Mazur, A., Skiba, J., Kulczyk, M., Przybysz, S., Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure (2012) Int J Mater Res, 103, pp. 580-589. , 1:CAS:528:DC%2BC38XhtVWiu7fM; Tong, L.B., Zheng, M.Y., Chang, H., Hu, X.S., Wu, K., Xu, S.W., Kamado, S., Kojima, Y., Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing (2009) Mater Sci Eng A, 523, pp. 289-294. , 1:CAS:528:DC%2BD1MXhtVKnu73K; Bakhsheshi-Rad, H.R., Idris, M.H., Abdul-Kadir, M.R., Ourdjini, A., Medraj, M., Daroonparvar, M., Hamzah, E., Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys (2014) Mater Des, 53, pp. 283-292. , 1:CAS:528:DC%2BC3sXhslCntLbO; Bazhenov, V.E., Li, A.V., Komissarov, A.A., Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys (2021) J Magnes Alloy, 9, pp. 1428-1441. , 1:CAS:528:DC%2BB3MXktFCrtA%3D%3D; Xiao, C., Shi, X.Y., Yu, W.T., In vivo biocompatibility evaluation of Zn-00.5Mg-(0, 0.5, 1 wt%)Ag implants in New Zealand rabbits (2021) Mater Sci Eng C, 119, p. 111435. , 1:CAS:528:DC%2BB3cXhvVSlsb7O; Yang, H., Jia, B., Zhang, Z., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications (2020) Nat Commun, 11, p. 401. , 2020NatCo.11.401Y, 1:CAS:528:DC%2BB3cXksFahsb0%3D, 31964879, 6972918; Wang, L., He, Y., Zhao, H., Xie, H., Li, S., Ren, Y., Qin, G., Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02 wt%Mg alloy wires during room-temperature drawing process (2018) J Alloys Compd, 740, pp. 949-957. , 1:CAS:528:DC%2BC1cXosFSjsQ%3D%3D; Huang, H., Li, G., Jia, Q., Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon (2022) Acta Biomater, 152, pp. 1-18. , 1:CAS:528:DC%2BB38XisV2rsb%2FN, 36028200; Demirtas, M., Yanar, H.A., Purcek, G., Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG / FG Zn–Al alloys processed by ECAP (2018) Lett Mater, 8 (4), pp. 532-537; Zaid, A.I.O., AlKasasbeh, J.A.S., Al-Qawabah, S.M.A., Effect of addition of some grain refiners to Zinc-Aluminum 22, ZA22, alloy on its grain size, mechanical characteristics in the cast and after pressing by the equal channel angular pressing, ECAP (2015) Adv Mater Res, 1105, pp. 172-177; Li, G., Yang, H., Zheng, Y., Chen, X.H., Yang, J.A., Zhu, D., Ruan, L., Takashima, K., Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility (2019) Acta Biomater, 97, pp. 23-45. , 1:CAS:528:DC%2BC1MXhsFersLfJ, 31349057; Li, G., Chen, D., Mine, Y., Takashima, K., Zheng, Y., Fatigue behavior of biodegradable Zn–Li binary alloys in air and simulated body fluid with pure Zn as control (2023) Acta Biomater, 168, pp. 637-649. , 1:CAS:528:DC%2BB3sXhs1yhsrfJ, 37517618; Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes (2004) Adv Eng Mater, 6, pp. 299-303. , 1:CAS:528:DC%2BD2cXlsFCrtL4%3D; Cantor, B., Chang, I., Knight, P., Vincent, A., Microstructural development in equiatomic multicomponent alloys (2004) Mater Sci Eng A, 375, pp. 213-218. , 1:CAS:528:DC%2BD2cXlvVWmu7c%3D; Li, H.F., Xie, X.H., Zhao, K., Wang, Y.B., Zheng, Y.F., Wang, W.H., Qin, L., In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass (2013) Acta Biomater, 9, pp. 8561-8573. , 1:CAS:528:DC%2BC3sXjsFCjtbs%3D, 23380208; Ghiban, B., Popescu, G., Dumitrescu, D., Soare, V., New high entropy alloy for biomedical applications (2017) Key Eng Mater, 750, pp. 180-183; Wang, S.P., Xu, J., TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties (2017) Mater Sci Eng C, 73, pp. 80-89. , 2017iamc.book...W, 1:CAS:528:DC%2BC28XitFGisL%2FM; Newell, К., Wang, Z., Arias, I., Mehta, A., Sohn, Y., Florczyk, S., Direct-contact cytotoxicity evaluation of CoCrFeNi-based multi-principal element alloys (2018) J Funct Biomater, 9, p. 59. , 1:CAS:528:DC%2BC1MXhtVamsLnN, 30347709, 6306902; Edalati, P., Floriano, R., Tang, Y., Mohammadi, A., Pereira, K.D., Luchessi, A.D., Edalati, K., Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion (2020) Mater Sci Eng C, 112. , 1:CAS:528:DC%2BB3cXmsVSluro%3D; Edalati, P., Mohammadi, A., Tang, Y., Floriano, R., Fuji, M., Edalati, K., Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion (2021) Mater Lett, 302. , 1:CAS:528:DC%2BB3MXhsFejtLzK; Hori, T., Nagase, T., Todai, M., Matsugaki, A., Nakano, T., Development of non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials (2019) Scr Mater, 172, pp. 83-87. , 1:CAS:528:DC%2BC1MXhsVWjt7zJ; Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., Producing bulk ultrafine-grained materials by severe plastic deformation (2006) JOM, 58 (4), pp. 33-39; Levitas, V.I., High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils (2019) Mater Trans, 60, pp. 1294-1301. , 1:CAS:528:DC%2BC1MXitVyqtLnJ; Mazilkin, A., Straumal, B., Kilmametov, A., Straumal, P., Baretzky, B., Phase transformations induced by severe plastic deformation (2019) Mater Trans, 60, pp. 1489-1499. , 1:CAS:528:DC%2BC1MXitlKmtb%2FF; Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Valiev, R.Z., Severe plastic deformation: new technique for powder consolidation and grain size refinement (1998) Powder Metall, 41, pp. 11-13. , 1998PowM..41..11A, 1:CAS:528:DyaK1cXivFOjsb0%3D; Zhilyaev, A.P., Gimazov, A.A., Raab, G.I., Langdon, T.G., Using high-pressure torsion for the cold-consolidation of copper chips produced by machining (2008) Mater Sci Eng A, 486, pp. 123-126. , 1:CAS:528:DC%2BD1cXlslGksr0%3D; Han, J.K., Jang, J.I., Langdon, T.G., Kawasaki, M., Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion (2019) Mater Trans, 60, pp. 1131-1138. , 1:CAS:528:DC%2BC1MXitVyqtLfN; Bachmaier, A., Pippan, R., High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties (2019) Mater Trans, 60, pp. 1256-1269. , 1:CAS:528:DC%2BC1MXitVyqtLnF; Edalati, K., Uehiro, R., Fujiwara, K., Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems (2017) Mater Sci Eng A, 701, pp. 158-166. , 1:CAS:528:DC%2BC2sXhtVOnu7zF; Edalati, K., Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process (2019) Mater Trans, 60, pp. 1221-1229. , 1:CAS:528:DC%2BC1MXitVyqtLbE; Edalati, K., Superfunctional materials by ultra-severe plastic deformation (2023) Materials, 16, p. 587. , 2023Mate..16.587E, 1:CAS:528:DC%2BB3sXhslantLo%3D, 36676324, 9861827; Campos-Quir{\'o}s, A., Cubero-Ses{\'i}n, J.M., Edalati, K., Synthesis of nanostructured biomaterials by high-pressure torsion: effect of niobium content on microstructure and mechanical properties of Ti–Nb alloys (2020) Mater Sci Eng A, 795. , 1:CAS:528:DC%2BB3cXhsFaisLzE; Gonz{\'a}lez-Mas{\'i}s, J., Cubero-Sesin, J.M., Campos-Quir{\'o}s, A., Edalati, K., Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion (2021) Mater Sci Eng A, 825. , 1:CAS:528:DC%2BB3MXhslGit77E; Raabe, D., Sander, B., Friak, M., Ma, D., Neugebauer, J., Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments (2007) Acta Mater, 55, pp. 4475-4487. , 2007AcMat.55.4475R, 1:CAS:528:DC%2BD2sXntFent7w%3D; Hanada, S., Ozaki, T., Takahashi, E., Watanabe, S., Yoshimi, K., Abumiya, T., Composition dependence of Young{\textquoteright}s modulus in beta titanium binary alloys (2003) Mater Sci Forum, 426-432, pp. 3103-3108; Semlitsch, M.F., Weber, H., Streicher, R.M., Sch{\"o}n, R., Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy (1992) Biomaterials, 13, pp. 781-788. , 1:CAS:528:DyaK38XmsFyit7c%3D, 1391401; Chen, F., Gu, Y., Xu, G., Cui, Y., Chang, H., Zhou, L., Improved fracture toughness by microalloying of Fe in Ti-6Al-4V (2020) Mater Des, 185. , 1:CAS:528:DC%2BC1MXhvFCit7fM; Long, M., Rack, H.J., Titanium alloys in total joint replacement: a materials science perspective (1998) Biomaterials, 19, pp. 1621-1639. , 1:CAS:528:DyaK1cXnslaisro%3D, 9839998; Niinomi, M., Design and development of metallic biomaterials with biological and mechanical biocompatibility (2019) J Biomed Mater Res A, 107, pp. 944-954. , 1:CAS:528:DC%2BC1MXlvFSrs7s%3D, 30861312; Boyer, R., Welsch, G., Collings, E.W., (1998) Materials properties handbook: titanium alloys, , USA, ASM International Materials Park; Elias, C.N., Fernandes, D.J., Moura De Souza, F., dos Santos, M.E., de Biasi, R.S., Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications (2019) J Mater Res Technol, 8, pp. 1060-1069. , 1:CAS:528:DC%2BC1cXhs12ns7rI; Vishnu, J., Sankar, M., Rack, H.J., Rao, N., Singh, A.K., Manivasagam, G., Effect of phase transformations during aging on tensile strength and ductility of metastable beta titanium alloy Ti-35Nb-7Zr-5Ta-035O for orthopedic applications (2020) Mater Sci Eng A, 779, p. 139127. , 1:CAS:528:DC%2BB3cXjvFWgtL0%3D; Zhang, D.C., Yang, S., Wei, M., Mao, Y.F., Tan, C.G., Lin, J.G., Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys (2012) J Mech Behav Biomed Mater, 13, pp. 156-165. , 1:CAS:528:DC%2BC3sXhtFCgtLk%3D, 22842657; {\c C}aha, I., Alves, A.C., Kuroda, P.A.B., Grandini, C.R., Pinto, A.M.P., Rocha, L.A., Toptan, F., Degradation behavior of Ti–Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina (2020) Corros Sci, 167. , 1:CAS:528:DC%2BB3cXhs1Cmu7k%3D; Senkov, O.N., Semiatin, S.L., Microstructure and properties of a refractory high-entropy alloy after cold working (2015) J Alloys Compd, 649, pp. 1110-1123. , 1:CAS:528:DC%2BC2MXhtlSisL%2FO; Edalati, K., Lee, S., Horita, Z., Continuous high-pressure torsion using wires (2012) J Mater Sci, 47, pp. 473-478. , 2012JMatS.47.473E, 1:CAS:528:DC%2BC3MXpvVOkt70%3D; Ivanisenko, Y., Kulagin, R., Fedorov, V., Mazilkin, A., Scherer, T., Baretzky, B., Hahn, H., High pressure torsion extrusion as a new severe plastic deformation process (2016) Mater Sci Eng A, 664, pp. 247-256. , 1:CAS:528:DC%2BC28XlvFCqsb4%3D; (2018) Proceedings of the international workshop on giant straining process for advanced materials (GSAM), , Edalati K, Ikoma Y, Horita Z (eds), IRC-GSAM, Kyushu Univ., Fukuoka, Japan; Lowe, T.C., Valiev, R.Z., Li, X., Ewing, B., Commercialization of bulk nanostructured metals and alloys (2021) MRS Bull, 46, pp. 265-272. , 2021MRSBu.46.265L, 1:CAS:528:DC%2BB38Xjt1agu7w%3D; (2023), )https://nanospd8.iisc.ac.in/docs/Abstract_Booklet.pdfUR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186225272&doi=10.1007%2fs10853-024-09464-0&partnerID=40&md5=edb4d73a581f70a4385e5b0340f4e704",
year = "2024",
month = feb,
day = "28",
doi = "10.1007/s10853-024-09464-0",
language = "Английский",
volume = "59",
pages = "5681--5697",
journal = "Journal of Materials Science",
issn = "0022-2461",
publisher = "Springer Nature",
number = "14",

}

RIS

TY - JOUR

T1 - Review: nanoSPD-produced metallic materials for advanced medical devices

AU - Valiev, R.Z.

AU - Zheng, Y.

AU - Edalati, K.

N1 - Export Date: 11 March 2024 CODEN: JMTSA Адрес для корреспонденции: Valiev, R.Z.; Ufa University of Science and Technology, 32 Zaki Validi str., Russian Federation; эл. почта: ruslan.valiev@ugatu.su Сведения о финансировании: Russian Science Foundation, RSF, 075-15-2022-1114, 22-19-00445 Текст о финансировании 1: Author (RZV) acknowledges the support in part from Russian Science Foundation (Grant No. 22-19-00445) and in part the Megagrant State Program (agreement 075-15-2022-1114 dated by 30 June 2022). Пристатейные ссылки: Valiev, R.Z., Straumal, B., Langdon, T.G., Using severe plastic deformation to produce nanostructured materials with superior properties (2022) Ann Rev Mater Res, 52, pp. 357-382. , 2022AnRMS.52.357V, 1:CAS:528:DC%2BB38XhtFCru73I; Edalati, K., Bachmaier, A., Beloshenko, V.A., Nanomaterials by severe plastic deformation: review of historical developments and recent advances (2022) Mater Res Lett, 10 (4), pp. 163-256. , 1:CAS:528:DC%2BB38Xkt1eisb4%3D; Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., Fundmentals of superior properties in bulk nanoSPD materials (2016) Mater Res Lett, 4 (1), pp. 1-21. , 1:CAS:528:DC%2BC28Xoslegt7k%3D; Lowe, T.C., Valiev, R.Z., Frontiers of bulk nanostructured metals in biomedical applications (2014) Advanced biomaterials and biodevices, pp. 3-52. , Tiwari A., Nordin A.N., (eds), USA, Wiley-Scrivener Publ; Floriano, R., Edalati, K., Effects of severe plastic deformation on advanced biomaterials for biomedical applications: a brief overview (2023) Mater Trans, 64, pp. 1673-1682. , 1:CAS:528:DC%2BB2cXpvVSltg%3D%3D; Valiev, R.Z., Parfenov, E.V., Parfenova, L.V., Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality (2019) Mater Trans, 60, pp. 1356-1366. , 1:CAS:528:DC%2BC1MXitVyqtLnO; Hanawa, T., (2010) Metals for biomedical devices, , Oxford, Woodhead Publishing Limited; Zheng, Y.F., Gu, X.N., Witte, A., (2014) Biodegradable metals Mater Sci Eng R, 77, pp. 1-43; Froes, F.H., Qian, M., (2018) Titanium in Medical and dental applications, , Duxford, Woodhead Publishing; Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., (2003) Titanium in medicine, , Berlin, Springer-Verlag; Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V., Bulk nanostructured materials from severe plastic deformation (2000) Prog Mater Sci, 45, pp. 103-189. , 1:CAS:528:DC%2BD3cXptFClsw%3D%3D; Valiev, R.Z., Semenova, I.P., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Sochova, J., Nanostructured titanium for biomedical applications (2008) Adv Eng Mater, 10, pp. B15-B17. , 1:CAS:528:DC%2BD1cXhtFOnu7%2FO; Valiev, R.Z., Sabirov, I., Zemtsova, E.G., Parfenov, E.V., Dluhoš, L., Lowe, T.C., (2018) Titanium in medical and dental applications, pp. 393-418. , Froes F., Qian M., (eds), Duxford, Woodhead Publishing; Gunderov, D.V., Polyakov, A.V., Semenova, I.P., Raab, G.I., Churakova, A.A., Gimaltdinova, E.I., Sabirov, I., Valiev, R.Z., Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing (2013) Mater Sci Eng A, 562, pp. 128-136. , 1:CAS:528:DC%2BC3sXntlGrtA%3D%3D; Valiev, R.Z., Nanostructural design of superstrong metallic materials by severe plastic deformation processing (2023) Microstruct, 3, p. 2023004. , 1:CAS:528:DC%2BB3sXhvVyjt77K; Faghihi, S., Azari, F., Zhilyaev, A.P., Szpunar, J.A., Vali, H., Tabrizian, M., Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion (2007) Biomater, 28, pp. 3887-3895. , 1:CAS:528:DC%2BD2sXns1KmsL4%3D; Estrin, Y., Ivanova, E.P., Michalska, A., Truong, V.K., Lapovok, R., Boyd, R., Accelerated stem cell attachment to ultrafine grained titanium (2011) Acta Biomater, 7, pp. 900-906. , 1:CAS:528:DC%2BC3MXhsF2msA%3D%3D, 20887818; Nie, F.L., Zheng, Y.F., Wei, S.C., Wang, D.S., Yu, Z.T., Salimgareeva, G.K., Polyakov, A.V., Valiev, R.Z., In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control (2013) J Biomed Mater Res, 101A, pp. 1694-1707. , 1:CAS:528:DC%2BC3sXlslygs7w%3D; Matchin, A.A., Nosov, E.V., Stadnikov, A.A., Klevtsov, G.V., Rezyapova, L.R., Sayapina, N.A., Blinova, E.V., Valiev, R.Z., In vivo studies of medical implants for maxillofacial surgery produced from nanostructured titanium (2023) ACS Biomater Sci Eng, 9 (11), pp. 6138-6145. , 1:CAS:528:DC%2BB3sXitVKntbfL, 37803938; Estrin, Y., Lapovok, R., Medvedev, A.E., Kasper, C., Ivanova, E., Lowe, T.C., Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation (2018) Titanium in medical and dental applications, pp. 419-454. , Froes F., Qian M., (eds), Duxford, Woodhead Publishing; Semenova, I., Yakushina, E., Nurgaleeva, V., Valiev, R., Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties (2009) Int J Mat Res, 100, pp. 1691-1696. , 1:CAS:528:DC%2BC3cXhvFSjtLw%3D; Saitova, L., Hoeppel, H.W., Goeken, M., Semenova, I.P., Valiev, R.Z., Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use (2009) Int J Fatig, 31, pp. 322-331. , 1:CAS:528:DC%2BD1cXhsVSgtrbN; Semenova, I.P., Saitova, L.R., Raab, G.I., Korshunov, A.I., Zhu, Y.T., Lowe, T.C., Valiev, R.Z., Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation (2006) Mater Sci Forum, 503-504, pp. 757-762; Stráský, J., Janeĉek, M., Semenova, I., Čížek, J., Bartha, K., Harcuba, P., Polyakova, V., Gatina, S., Microstructure and lattice defects in ultrafine grained biomedical α+β and metastable β Ti alloys (2018) Titanium in medical and dental applications, pp. 455-475. , Froes F., Qian M., (eds), Duxford, UK, Woodhead Publishing; Niinomi, M., Mechanical biocompatibilities of titanium alloys for biomedical applications (2008) J Mech Behav Biomed Mater, 1, pp. 30-42. , 19627769; Niinomi, M., Nakai, M., Hieda, J., Development of new metallic alloys for biomedical applications (2012) Acta Biomater, 8, pp. 3888-3903. , 1:CAS:528:DC%2BC38XhsVCitr%2FI, 22765961; Jorge, A.M., Jr., Roche, V., Pérez, D.A.G., Valiev, R.Z., Nanostructuring Ti-alloys by HPT: phase transformation, mechanical and corrosion properties and bioactivation (2023) Mater Trans, 64, pp. 1306-1316. , 1:CAS:528:DC%2BB3sXit1Oqu7rN; Xu, W., Wu, X., Figueiredo, R.B., Stoica, M., Calin, M., Eckert, J., Langdon, T.G., Xia, K., Nanocrystalline body-centered cubic beta-titanium alloy processed by high-pressure torsion (2009) Int J Mater Res, 100, pp. 1662-1667. , 1:CAS:528:DC%2BC3cXhvFSjt7k%3D; Yilmazer, H., Niinomi, M., Nakai, M., Cho, K., Hieda, J., Todaka, Y., Miyazaki, T., Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion (2013) Mater Sci Eng C, 33, pp. 2499-2507. , 1:CAS:528:DC%2BC3sXktFaru7g%3D; Zafari, A., Wei, X., Xu, W., Xia, K., Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: the role played by stress induced martensitic transformation (2015) Acta Mater, 97, pp. 146-155. , 2015AcMat.97.146Z, 1:CAS:528:DC%2BC2MXhtFKisLvE; Kazarinov, N., Stotskiy, A., Polyakov, A., Valiev, R.Z., Enikeev, N., Finite element modeling for virtual design to miniaturize medical implants manufactured of nanostructured titanium with enhanced mechanical performance (2022) Materials, 15, p. 7417. , 2022Mate..15.7417K, 1:CAS:528:DC%2BB38XivVKrt7bJ, 36363009, 9658747; Semenova, I.P., Klevtsov, G.V., Klevtsova, N.A., Dyakonov, G., Matchin, A.A., Valiev, R.Z., Nanostructured titanium for maxillofacial mini-implants (2016) Adv Eng Mater, 18, pp. 1216-1224. , 1:CAS:528:DC%2BC28XhtFOjt7bJ; ISO 14602 Non-active surgical implants-Implants for Osteosynthesis particular requirements; http://www.instron.com/en/testing-solutions/by-test-type/simple-cyclic/orthopedic-micro-implants; Virtanen, S., Biodegradable Mg and Mg alloys: corrosion and biocompatibility (2011) Mater Sci Eng B, 176, pp. 1600-1608. , 1:CAS:528:DC%2BC3MXhtlykurbL; Lafont, A., Yang, Y., Magnesium stent scaffolds: DREAMS become reality (2016) Lancet, 387, pp. 3-4. , 10013, 26560250; Zheng, Y., (2016) Magnesium alloys as degradable biomaterials., , CRC Press, Taylor & Francis Group, Boca Raton, FL; Haenzi, A.C., Sologubenko, A.S., Uggowitzer, P.J., Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications (2009) Int J Mater Res, 100, pp. 1127-1136. , 1:CAS:528:DC%2BD1MXhtFOgtr3N; Witte, F., Hort, N., Feyerabend, F., Vogt, C., Magnesium Corrosion: A challenging concept for degradable implants (2011) Corrosion of Magnesium Alloys. (Ed) Song G, Woodhead, Philadelphia, Pp., pp. 403-425; Dobatkin, S.V., Lukyanova, E.A., Martynenko, N.S., Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation (2017) IOP Conf Ser: Mater Sci Eng, 194. , 1:CAS:528:DC%2BC1cXkvVektL0%3D; Li, W.T., Liu, X., Zheng, Y.F., In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion (2020) Biomater Sci, 8, pp. 5071-5087. , 1:CAS:528:DC%2BB3cXhsVKrsrfO, 32812545; Vinogradov, A., Merson, E., Myagkikh, P., Linderov, M., Brilevsky, A., Merson, D., Attaining high functional performance in biodegradable Mg alloys: an overview of challenges and prospects for the Mg–Zn–Ca system (2023) Materials, 16 (3), p. 1324. , 2023Mate..16.1324V, 1:CAS:528:DC%2BB3sXjtFGmu7o%3D, 36770330, 9920771; Carvalho, A.P., Figueiredo, R.B., An overview of the effect of grain size on mechanical properties of magnesium and its alloys (2023) Mater Trans, 64, pp. 1272-1283. , 1:CAS:528:DC%2BB3sXit1Oqu73M; Krzysztof, B., Jelena, H., Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview (2023) Mater Trans, 64, pp. 1709-1723; Sun, W.T., Qiao, X.G., Zheng, M.Y., Xu, C., Kamado, S., Altered Aging behavior of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion (2018) Acta Mater, 151, pp. 260-270. , 2018AcMat.151.260S, 1:CAS:528:DC%2BC1cXnsFSqtLk%3D; Khan, A.R., Grewal, N.S., Zhou, C., Kunshan, Y., Zhang, H.J., Jun, Я., Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses (2023) Results Eng, 20. , 1:CAS:528:DC%2BB3sXit1SltbfF; Wang, H., Estrin, Y., Fu, H., Song, G., Zuberova, Z., The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31 (2007) Adv Eng Mater, 9, pp. 967-972; Hadzima, B., (2008) Nanomaterials by severe plastic deformation IV, Pts 1 and 2, pp. 994-999. , Estrin Y., Maier H.J., (eds), Germany, Trans Tech Publications, Goslar; Minarik, P., Kral, R., Janecek, M., Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys (2013) Appl Surf Sci, 281, pp. 44-48. , 2013ApSS.281..44M, 1:CAS:528:DC%2BC3sXmvV2hsQ%3D%3D; Parfenov, E.V., Kulyasova, O.B., Mukaeva, V.R., Influence of ultra-fine grain structure on corrosion behavior of biodegradable Mg-1Ca alloy (2020) Corros Sci, 163. , 1:CAS:528:DC%2BC1MXitFSjt7fP; Kutniy, K.V., Papirov, I.I., Tikhonovsky, M.A., Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants (2009) Mater Und Werkst, 40, pp. 242-246. , 1:CAS:528:DC%2BD1MXmtl2nsrc%3D; Pachla, W., Mazur, A., Skiba, J., Kulczyk, M., Przybysz, S., Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure (2012) Int J Mater Res, 103, pp. 580-589. , 1:CAS:528:DC%2BC38XhtVWiu7fM; Tong, L.B., Zheng, M.Y., Chang, H., Hu, X.S., Wu, K., Xu, S.W., Kamado, S., Kojima, Y., Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing (2009) Mater Sci Eng A, 523, pp. 289-294. , 1:CAS:528:DC%2BD1MXhtVKnu73K; Bakhsheshi-Rad, H.R., Idris, M.H., Abdul-Kadir, M.R., Ourdjini, A., Medraj, M., Daroonparvar, M., Hamzah, E., Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys (2014) Mater Des, 53, pp. 283-292. , 1:CAS:528:DC%2BC3sXhslCntLbO; Bazhenov, V.E., Li, A.V., Komissarov, A.A., Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys (2021) J Magnes Alloy, 9, pp. 1428-1441. , 1:CAS:528:DC%2BB3MXktFCrtA%3D%3D; Xiao, C., Shi, X.Y., Yu, W.T., In vivo biocompatibility evaluation of Zn-00.5Mg-(0, 0.5, 1 wt%)Ag implants in New Zealand rabbits (2021) Mater Sci Eng C, 119, p. 111435. , 1:CAS:528:DC%2BB3cXhvVSlsb7O; Yang, H., Jia, B., Zhang, Z., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications (2020) Nat Commun, 11, p. 401. , 2020NatCo.11.401Y, 1:CAS:528:DC%2BB3cXksFahsb0%3D, 31964879, 6972918; Wang, L., He, Y., Zhao, H., Xie, H., Li, S., Ren, Y., Qin, G., Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02 wt%Mg alloy wires during room-temperature drawing process (2018) J Alloys Compd, 740, pp. 949-957. , 1:CAS:528:DC%2BC1cXosFSjsQ%3D%3D; Huang, H., Li, G., Jia, Q., Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon (2022) Acta Biomater, 152, pp. 1-18. , 1:CAS:528:DC%2BB38XisV2rsb%2FN, 36028200; Demirtas, M., Yanar, H.A., Purcek, G., Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG / FG Zn–Al alloys processed by ECAP (2018) Lett Mater, 8 (4), pp. 532-537; Zaid, A.I.O., AlKasasbeh, J.A.S., Al-Qawabah, S.M.A., Effect of addition of some grain refiners to Zinc-Aluminum 22, ZA22, alloy on its grain size, mechanical characteristics in the cast and after pressing by the equal channel angular pressing, ECAP (2015) Adv Mater Res, 1105, pp. 172-177; Li, G., Yang, H., Zheng, Y., Chen, X.H., Yang, J.A., Zhu, D., Ruan, L., Takashima, K., Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility (2019) Acta Biomater, 97, pp. 23-45. , 1:CAS:528:DC%2BC1MXhsFersLfJ, 31349057; Li, G., Chen, D., Mine, Y., Takashima, K., Zheng, Y., Fatigue behavior of biodegradable Zn–Li binary alloys in air and simulated body fluid with pure Zn as control (2023) Acta Biomater, 168, pp. 637-649. , 1:CAS:528:DC%2BB3sXhs1yhsrfJ, 37517618; Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes (2004) Adv Eng Mater, 6, pp. 299-303. , 1:CAS:528:DC%2BD2cXlsFCrtL4%3D; Cantor, B., Chang, I., Knight, P., Vincent, A., Microstructural development in equiatomic multicomponent alloys (2004) Mater Sci Eng A, 375, pp. 213-218. , 1:CAS:528:DC%2BD2cXlvVWmu7c%3D; Li, H.F., Xie, X.H., Zhao, K., Wang, Y.B., Zheng, Y.F., Wang, W.H., Qin, L., In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass (2013) Acta Biomater, 9, pp. 8561-8573. , 1:CAS:528:DC%2BC3sXjsFCjtbs%3D, 23380208; Ghiban, B., Popescu, G., Dumitrescu, D., Soare, V., New high entropy alloy for biomedical applications (2017) Key Eng Mater, 750, pp. 180-183; Wang, S.P., Xu, J., TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties (2017) Mater Sci Eng C, 73, pp. 80-89. , 2017iamc.book...W, 1:CAS:528:DC%2BC28XitFGisL%2FM; Newell, К., Wang, Z., Arias, I., Mehta, A., Sohn, Y., Florczyk, S., Direct-contact cytotoxicity evaluation of CoCrFeNi-based multi-principal element alloys (2018) J Funct Biomater, 9, p. 59. , 1:CAS:528:DC%2BC1MXhtVamsLnN, 30347709, 6306902; Edalati, P., Floriano, R., Tang, Y., Mohammadi, A., Pereira, K.D., Luchessi, A.D., Edalati, K., Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion (2020) Mater Sci Eng C, 112. , 1:CAS:528:DC%2BB3cXmsVSluro%3D; Edalati, P., Mohammadi, A., Tang, Y., Floriano, R., Fuji, M., Edalati, K., Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion (2021) Mater Lett, 302. , 1:CAS:528:DC%2BB3MXhsFejtLzK; Hori, T., Nagase, T., Todai, M., Matsugaki, A., Nakano, T., Development of non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials (2019) Scr Mater, 172, pp. 83-87. , 1:CAS:528:DC%2BC1MXhsVWjt7zJ; Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., Producing bulk ultrafine-grained materials by severe plastic deformation (2006) JOM, 58 (4), pp. 33-39; Levitas, V.I., High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils (2019) Mater Trans, 60, pp. 1294-1301. , 1:CAS:528:DC%2BC1MXitVyqtLnJ; Mazilkin, A., Straumal, B., Kilmametov, A., Straumal, P., Baretzky, B., Phase transformations induced by severe plastic deformation (2019) Mater Trans, 60, pp. 1489-1499. , 1:CAS:528:DC%2BC1MXitlKmtb%2FF; Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Valiev, R.Z., Severe plastic deformation: new technique for powder consolidation and grain size refinement (1998) Powder Metall, 41, pp. 11-13. , 1998PowM..41..11A, 1:CAS:528:DyaK1cXivFOjsb0%3D; Zhilyaev, A.P., Gimazov, A.A., Raab, G.I., Langdon, T.G., Using high-pressure torsion for the cold-consolidation of copper chips produced by machining (2008) Mater Sci Eng A, 486, pp. 123-126. , 1:CAS:528:DC%2BD1cXlslGksr0%3D; Han, J.K., Jang, J.I., Langdon, T.G., Kawasaki, M., Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion (2019) Mater Trans, 60, pp. 1131-1138. , 1:CAS:528:DC%2BC1MXitVyqtLfN; Bachmaier, A., Pippan, R., High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties (2019) Mater Trans, 60, pp. 1256-1269. , 1:CAS:528:DC%2BC1MXitVyqtLnF; Edalati, K., Uehiro, R., Fujiwara, K., Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems (2017) Mater Sci Eng A, 701, pp. 158-166. , 1:CAS:528:DC%2BC2sXhtVOnu7zF; Edalati, K., Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process (2019) Mater Trans, 60, pp. 1221-1229. , 1:CAS:528:DC%2BC1MXitVyqtLbE; Edalati, K., Superfunctional materials by ultra-severe plastic deformation (2023) Materials, 16, p. 587. , 2023Mate..16.587E, 1:CAS:528:DC%2BB3sXhslantLo%3D, 36676324, 9861827; Campos-Quirós, A., Cubero-Sesín, J.M., Edalati, K., Synthesis of nanostructured biomaterials by high-pressure torsion: effect of niobium content on microstructure and mechanical properties of Ti–Nb alloys (2020) Mater Sci Eng A, 795. , 1:CAS:528:DC%2BB3cXhsFaisLzE; González-Masís, J., Cubero-Sesin, J.M., Campos-Quirós, A., Edalati, K., Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion (2021) Mater Sci Eng A, 825. , 1:CAS:528:DC%2BB3MXhslGit77E; Raabe, D., Sander, B., Friak, M., Ma, D., Neugebauer, J., Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments (2007) Acta Mater, 55, pp. 4475-4487. , 2007AcMat.55.4475R, 1:CAS:528:DC%2BD2sXntFent7w%3D; Hanada, S., Ozaki, T., Takahashi, E., Watanabe, S., Yoshimi, K., Abumiya, T., Composition dependence of Young’s modulus in beta titanium binary alloys (2003) Mater Sci Forum, 426-432, pp. 3103-3108; Semlitsch, M.F., Weber, H., Streicher, R.M., Schön, R., Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy (1992) Biomaterials, 13, pp. 781-788. , 1:CAS:528:DyaK38XmsFyit7c%3D, 1391401; Chen, F., Gu, Y., Xu, G., Cui, Y., Chang, H., Zhou, L., Improved fracture toughness by microalloying of Fe in Ti-6Al-4V (2020) Mater Des, 185. , 1:CAS:528:DC%2BC1MXhvFCit7fM; Long, M., Rack, H.J., Titanium alloys in total joint replacement: a materials science perspective (1998) Biomaterials, 19, pp. 1621-1639. , 1:CAS:528:DyaK1cXnslaisro%3D, 9839998; Niinomi, M., Design and development of metallic biomaterials with biological and mechanical biocompatibility (2019) J Biomed Mater Res A, 107, pp. 944-954. , 1:CAS:528:DC%2BC1MXlvFSrs7s%3D, 30861312; Boyer, R., Welsch, G., Collings, E.W., (1998) Materials properties handbook: titanium alloys, , USA, ASM International Materials Park; Elias, C.N., Fernandes, D.J., Moura De Souza, F., dos Santos, M.E., de Biasi, R.S., Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications (2019) J Mater Res Technol, 8, pp. 1060-1069. , 1:CAS:528:DC%2BC1cXhs12ns7rI; Vishnu, J., Sankar, M., Rack, H.J., Rao, N., Singh, A.K., Manivasagam, G., Effect of phase transformations during aging on tensile strength and ductility of metastable beta titanium alloy Ti-35Nb-7Zr-5Ta-035O for orthopedic applications (2020) Mater Sci Eng A, 779, p. 139127. , 1:CAS:528:DC%2BB3cXjvFWgtL0%3D; Zhang, D.C., Yang, S., Wei, M., Mao, Y.F., Tan, C.G., Lin, J.G., Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys (2012) J Mech Behav Biomed Mater, 13, pp. 156-165. , 1:CAS:528:DC%2BC3sXhtFCgtLk%3D, 22842657; Çaha, I., Alves, A.C., Kuroda, P.A.B., Grandini, C.R., Pinto, A.M.P., Rocha, L.A., Toptan, F., Degradation behavior of Ti–Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina (2020) Corros Sci, 167. , 1:CAS:528:DC%2BB3cXhs1Cmu7k%3D; Senkov, O.N., Semiatin, S.L., Microstructure and properties of a refractory high-entropy alloy after cold working (2015) J Alloys Compd, 649, pp. 1110-1123. , 1:CAS:528:DC%2BC2MXhtlSisL%2FO; Edalati, K., Lee, S., Horita, Z., Continuous high-pressure torsion using wires (2012) J Mater Sci, 47, pp. 473-478. , 2012JMatS.47.473E, 1:CAS:528:DC%2BC3MXpvVOkt70%3D; Ivanisenko, Y., Kulagin, R., Fedorov, V., Mazilkin, A., Scherer, T., Baretzky, B., Hahn, H., High pressure torsion extrusion as a new severe plastic deformation process (2016) Mater Sci Eng A, 664, pp. 247-256. , 1:CAS:528:DC%2BC28XlvFCqsb4%3D; (2018) Proceedings of the international workshop on giant straining process for advanced materials (GSAM), , Edalati K, Ikoma Y, Horita Z (eds), IRC-GSAM, Kyushu Univ., Fukuoka, Japan; Lowe, T.C., Valiev, R.Z., Li, X., Ewing, B., Commercialization of bulk nanostructured metals and alloys (2021) MRS Bull, 46, pp. 265-272. , 2021MRSBu.46.265L, 1:CAS:528:DC%2BB38Xjt1agu7w%3D; (2023), )https://nanospd8.iisc.ac.in/docs/Abstract_Booklet.pdfUR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186225272&doi=10.1007%2fs10853-024-09464-0&partnerID=40&md5=edb4d73a581f70a4385e5b0340f4e704

PY - 2024/2/28

Y1 - 2024/2/28

N2 - Presently, special metallic materials (titanium and a number of its alloys, stainless steels, magnesium alloys, etc.) are extensively used for the manufacturing of many medical tools and devices and choosing the appropriate material is of vital importance as it determines the success and safety of the medical devices for their application. Recent years witnessed active research and development to improve the mechanical and functional properties of these biomaterials using their nanostructuring by means of severe plastic deformation (SPD) techniques. The specific nanostructural features induced by SPD processing in metallic biomaterials significantly contribute to their performance, which has been evidenced in a series of investigative activities conducted lately to improve existing metallic biomaterials and explore potential for their production capability. This paper presents a review of these works and considers the scientific principles of achieving a higher level of properties in the metallic biomaterials as well as related challenges and uncertainties, which forms the basis for the production of a new generation of medical implants with improved design and increased biofunctionality. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.

AB - Presently, special metallic materials (titanium and a number of its alloys, stainless steels, magnesium alloys, etc.) are extensively used for the manufacturing of many medical tools and devices and choosing the appropriate material is of vital importance as it determines the success and safety of the medical devices for their application. Recent years witnessed active research and development to improve the mechanical and functional properties of these biomaterials using their nanostructuring by means of severe plastic deformation (SPD) techniques. The specific nanostructural features induced by SPD processing in metallic biomaterials significantly contribute to their performance, which has been evidenced in a series of investigative activities conducted lately to improve existing metallic biomaterials and explore potential for their production capability. This paper presents a review of these works and considers the scientific principles of achieving a higher level of properties in the metallic biomaterials as well as related challenges and uncertainties, which forms the basis for the production of a new generation of medical implants with improved design and increased biofunctionality. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85186225272

UR - https://www.mendeley.com/catalogue/e0832d96-de7f-39a3-a0cc-7be02df4a63c/

U2 - 10.1007/s10853-024-09464-0

DO - 10.1007/s10853-024-09464-0

M3 - статья

VL - 59

SP - 5681

EP - 5697

JO - Journal of Materials Science

JF - Journal of Materials Science

SN - 0022-2461

IS - 14

ER -

ID: 117487148