DOI

Efficient traffic management in a modern urban road network seems impossible today without the support of artificial intelligence systems that use accurate travel demand data for predicting traffic congestions. However, despite researchers being equipped with different approaches and techniques to cope with travel demand estimation, there is still a gap between up-to-date accuracy requirements and available methods. The present paper is devoted to this urgent problem and investigates evolutionary strategies for the travel demand search task, formulated as an inverse traffic assignment problem. We develop polynomial regression models to estimate overall demand by observed congestions. The overall demand value allows one to restrict the set of feasible travel demand matrices. Eventually, we offer the travel demand estimation problem minimizing the deviation of both congestion and time on the simplex.

Язык оригиналаанглийский
Название основной публикацииArtificial Intelligence Trends in Systems - Proceedings of 11th Computer Science On-line Conference 2022, Vol 2
РедакторыRadek Silhavy
ИздательSpringer Nature
Страницы110-120
Число страниц11
ISBN (печатное издание)9783031090752
DOI
СостояниеОпубликовано - 2022
Событие11th Computer Science On-line Conference, CSOC 2022 - Virtual, Online
Продолжительность: 26 апр 202226 апр 2022

Серия публикаций

НазваниеLecture Notes in Networks and Systems
Том502 LNNS
ISSN (печатное издание)2367-3370
ISSN (электронное издание)2367-3389

конференция

конференция11th Computer Science On-line Conference, CSOC 2022
ГородVirtual, Online
Период26/04/2226/04/22

    Предметные области Scopus

  • Системотехника
  • Обработка сигналов
  • Компьютерные сети и коммуникации

ID: 97924573