DOI

We consider resonances for fourth order differential operators on the half-line with compactly supported coefficients. We determine asymptotics of a counting function of resonances in complex discs at large radius, describe the forbidden domain for resonances and obtain trace formulas in terms of resonances. We apply these results to the Euler–Bernoulli operator on the half-line. The coefficients of this operator are positive and constants outside a finite interval. We show that this operator does not have any eigenvalues and resonances iff its coefficients are constants on the whole half-line.

Язык оригиналаанглийский
Страницы (с-по)534-566
Число страниц33
ЖурналJournal of Differential Equations
Том263
Номер выпуска1
DOI
СостояниеОпубликовано - 5 июл 2017

    Предметные области Scopus

  • Анализ

ID: 35631207