DOI

The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2Ω(n), where n is the number of vertices in Gn. This lower bound is tight up to some polynomial. Our result implies the 2Ω(n) lower bounds for the complete graph K2n+1 and the complete bipartite graph Kn,O(n) that improves the lower bounds following from [Raz04]. Our results also imply the well-known exponential lower bounds on the resolution complexity of the pigeonhole principle, the functional pigeonhole principle and the pigeonhole principle over a graph. We also prove the following corollary. For every natural number d, for every n large enough, for every function h : {1, 2, ..., n} → {1, 2, ..., d}, we construct a graph with n vertices that has the following properties. There exists a constant D such that the degree of the i-th vertex is at least h(i) and at most D, and it is impossible to make all degrees equal to h(i) by removing the graph’s edges. Moreover, any proof of this statement in the resolution proof system has size 2Ω(n). This result implies well-known exponential lower bounds on the Tseitin formulas as well as new results: for example, the same property of a complete graph.

Язык оригиналаанглийский
Название основной публикацииComputer Science - Theory and Applications - 10th International Computer Science Symposium in Russia, CSR 2015, Proceedings
РедакторыLev D. Beklemishev, Daniil V. Musatov, Daniil V. Musatov
ИздательSpringer Nature
Страницы219-230
Число страниц12
ISBN (печатное издание)9783319202969
DOI
СостояниеОпубликовано - 1 янв 2015
Событие10th International Computer Science Symposium in Russia, CSR 2015 - Listvyanka, Российская Федерация
Продолжительность: 13 июл 201517 июл 2015

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том9139
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция10th International Computer Science Symposium in Russia, CSR 2015
Страна/TерриторияРоссийская Федерация
ГородListvyanka
Период13/07/1517/07/15

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 49785764