Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Research into Collision Avoidance Models for Unmanned Aerial Vehicles. / Akbashev, Mark; Muslimov, Tagir; Munasypov, Rustem.
Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022. Institute of Electrical and Electronics Engineers Inc., 2022. стр. 740-745 (Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Research into Collision Avoidance Models for Unmanned Aerial Vehicles
AU - Akbashev, Mark
AU - Muslimov, Tagir
AU - Munasypov, Rustem
N1 - Publisher Copyright: © 2022 IEEE.
PY - 2022/5/16
Y1 - 2022/5/16
N2 - This paper presents an investigation into models that can be used to train unmanned aerial vehicles (UAVs or drones) to avoid obstacles and to keep a safe distance from such. The paper describes the key components of the MATLAB/Simulink model and covers the subsystem of blocks for the UA V flight scenario. The authors have tested two scenarios based on vector field histograms (VFH) using different parameters, whereby the accuracy of tracing flight waypoints varied. Simulation results are shown in graphs. The paper further shows how the ROS simulator can use learning algorithms that could be tested on real aircraft.
AB - This paper presents an investigation into models that can be used to train unmanned aerial vehicles (UAVs or drones) to avoid obstacles and to keep a safe distance from such. The paper describes the key components of the MATLAB/Simulink model and covers the subsystem of blocks for the UA V flight scenario. The authors have tested two scenarios based on vector field histograms (VFH) using different parameters, whereby the accuracy of tracing flight waypoints varied. Simulation results are shown in graphs. The paper further shows how the ROS simulator can use learning algorithms that could be tested on real aircraft.
KW - collision avoidance
KW - drone
KW - Q-Learning algorithm
KW - ROS simulator
KW - vector field histogram
UR - http://www.scopus.com/inward/record.url?scp=85133126873&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/d2a00a7a-2711-3915-ba85-206ba017a26e/
U2 - 10.1109/icieam54945.2022.9787205
DO - 10.1109/icieam54945.2022.9787205
M3 - Conference contribution
AN - SCOPUS:85133126873
SN - 9781665483698
T3 - Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022
SP - 740
EP - 745
BT - Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022
Y2 - 16 May 2022 through 20 May 2022
ER -
ID: 98339943