Результаты исследований: Научные публикации в периодических изданиях › статья
REPRESENTATION OF THE beta-FUNCTION AND ANOMALOUS DIMENSIONS BY NONSINGULAR INTEGRALS IN MODELS OF CRITICAL DYNAMICS. / Adzhemyan, L. Ts.; Vorob'eva, S. E.; Kompaniets, M. V.
в: Theoretical and Mathematical Physics, Том 185, № 1, 2015.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - REPRESENTATION OF THE beta-FUNCTION AND ANOMALOUS DIMENSIONS BY NONSINGULAR INTEGRALS IN MODELS OF CRITICAL DYNAMICS
AU - Adzhemyan, L. Ts.
AU - Vorob'eva, S. E.
AU - Kompaniets, M. V.
PY - 2015
Y1 - 2015
N2 - We propose a method for calculating the beta-function and anomalous dimensions in critical dynamics models that is convenient for numerical calculations in the framework of the renormalization group and epsilon-expansion. Those quantities are expressed in terms of the renormalized Green's function, which is renormalized using the operation R represented in a form that allows reducing ultraviolet divergences of Feynman diagrams explicitly. The integrals needed for the calculation do not contain poles in epsilon and are convenient for numerical integration.
AB - We propose a method for calculating the beta-function and anomalous dimensions in critical dynamics models that is convenient for numerical calculations in the framework of the renormalization group and epsilon-expansion. Those quantities are expressed in terms of the renormalized Green's function, which is renormalized using the operation R represented in a form that allows reducing ultraviolet divergences of Feynman diagrams explicitly. The integrals needed for the calculation do not contain poles in epsilon and are convenient for numerical integration.
M3 - Article
VL - 185
JO - Theoretical and Mathematical Physics (Russian Federation)
JF - Theoretical and Mathematical Physics (Russian Federation)
SN - 0040-5779
IS - 1
ER -
ID: 4021391