DOI

In this paper, the stochastic theory of developed turbulence is considered within the framework of the quantum field renormalization group and operator expansions. The problem of justifying the Kolmogorov-Obukhov theorem in application to the correlation functions of composite operators is discussed. An explicit expression is found for the critical dimension of a general-type composite operator. For an arbitrary UV-finite composite operator, the second Kolmogorov hypothesis (the viscosity-independence of the correlator) is proved and the dependence of various correlators on the external turbulence scale is determined. It is shown that the problem involves an infinite number of Galilean-invariant scalar operators with negative critical dimensions.

Язык оригиналаанглийский
Страницы (с-по)97-108
Число страниц12
ЖурналTheoretical and Mathematical Physics
Том110
Номер выпуска1
DOI
СостояниеОпубликовано - янв 1997

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 86533836