Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper, the stochastic theory of developed turbulence is considered within the framework of the quantum field renormalization group and operator expansions. The problem of justifying the Kolmogorov-Obukhov theorem in application to the correlation functions of composite operators is discussed. An explicit expression is found for the critical dimension of a general-type composite operator. For an arbitrary UV-finite composite operator, the second Kolmogorov hypothesis (the viscosity-independence of the correlator) is proved and the dependence of various correlators on the external turbulence scale is determined. It is shown that the problem involves an infinite number of Galilean-invariant scalar operators with negative critical dimensions.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 97-108 |
Число страниц | 12 |
Журнал | Theoretical and Mathematical Physics |
Том | 110 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - янв 1997 |
ID: 86533836