Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Remarks on random countable stable zonotopes. / Davydov, Youri; Paulauskas, Vygantas.
в: Statistics and Probability Letters, Том 153, 10.2019, стр. 187-191.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Remarks on random countable stable zonotopes
AU - Davydov, Youri
AU - Paulauskas, Vygantas
PY - 2019/10
Y1 - 2019/10
N2 - In the paper we study random stable countable zonotopes in Rd, given by [Formula presented], where ⊕ stands for Minkowski sum, Γk=∑1 kτj, {τj,j≥1} are i.i.d. random variables with common standard exponential distribution, and {εk,k≥1} are i.i.d. random vectors in Rd with common distribution σ, concentrated on the unit sphere of Rd. The sequences (τk) and (εk) are supposed to be independent. We consider these random sets as elements of the space Kd of all compact convex subsets of Rd with the Hausdorff distance. The boundary of Zα has non-trivial Cantor-type structure, and, in the case d=2 and under mild condition on σ, we prove that the Hausdorff dimension of the set of extremal points of the boundary of Zα is equal to α. As a by-product we provide some kind of geometrical characterization of (non-random) countable zonotopes in the class of zonoids, which are limits of zonotopes.
AB - In the paper we study random stable countable zonotopes in Rd, given by [Formula presented], where ⊕ stands for Minkowski sum, Γk=∑1 kτj, {τj,j≥1} are i.i.d. random variables with common standard exponential distribution, and {εk,k≥1} are i.i.d. random vectors in Rd with common distribution σ, concentrated on the unit sphere of Rd. The sequences (τk) and (εk) are supposed to be independent. We consider these random sets as elements of the space Kd of all compact convex subsets of Rd with the Hausdorff distance. The boundary of Zα has non-trivial Cantor-type structure, and, in the case d=2 and under mild condition on σ, we prove that the Hausdorff dimension of the set of extremal points of the boundary of Zα is equal to α. As a by-product we provide some kind of geometrical characterization of (non-random) countable zonotopes in the class of zonoids, which are limits of zonotopes.
KW - Countable random zonotopes
KW - Hausdorff dimension
KW - Zonoids
KW - Zonotopes
KW - SETS
UR - http://www.scopus.com/inward/record.url?scp=85068145349&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/remarks-random-countable-stable-zonotopes
U2 - 10.1016/j.spl.2019.06.018
DO - 10.1016/j.spl.2019.06.018
M3 - Article
AN - SCOPUS:85068145349
VL - 153
SP - 187
EP - 191
JO - Statistics and Probability Letters
JF - Statistics and Probability Letters
SN - 0167-7152
ER -
ID: 49897516