Standard

Remark on logically constant self-similar processes. / Davydov, Yu.

в: Journal of Mathematical Sciences (United States), Том 188, № 6, 02.2013, стр. 686-688.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Davydov, Y 2013, 'Remark on logically constant self-similar processes', Journal of Mathematical Sciences (United States), Том. 188, № 6, стр. 686-688. https://doi.org/10.1007/s10958-013-1158-3

APA

Davydov, Y. (2013). Remark on logically constant self-similar processes. Journal of Mathematical Sciences (United States), 188(6), 686-688. https://doi.org/10.1007/s10958-013-1158-3

Vancouver

Davydov Y. Remark on logically constant self-similar processes. Journal of Mathematical Sciences (United States). 2013 Февр.;188(6):686-688. https://doi.org/10.1007/s10958-013-1158-3

Author

Davydov, Yu. / Remark on logically constant self-similar processes. в: Journal of Mathematical Sciences (United States). 2013 ; Том 188, № 6. стр. 686-688.

BibTeX

@article{8012a9e9cd0b4082bd28111c04dfc06b,
title = "Remark on logically constant self-similar processes",
abstract = "Let X = {X(t), t∈ℝ+} be as self-similar processes with index α>0. We show that if X is locally constant and ℙ{X(1)=0}=0, then the law of X(t) is absolutely continuous. We discuss applicants of this result to homogeneous functions of a multidimensional fractional Brownian motion.",
author = "Yu Davydov",
note = "Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2013",
month = feb,
doi = "10.1007/s10958-013-1158-3",
language = "English",
volume = "188",
pages = "686--688",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Remark on logically constant self-similar processes

AU - Davydov, Yu

N1 - Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2013/2

Y1 - 2013/2

N2 - Let X = {X(t), t∈ℝ+} be as self-similar processes with index α>0. We show that if X is locally constant and ℙ{X(1)=0}=0, then the law of X(t) is absolutely continuous. We discuss applicants of this result to homogeneous functions of a multidimensional fractional Brownian motion.

AB - Let X = {X(t), t∈ℝ+} be as self-similar processes with index α>0. We show that if X is locally constant and ℙ{X(1)=0}=0, then the law of X(t) is absolutely continuous. We discuss applicants of this result to homogeneous functions of a multidimensional fractional Brownian motion.

UR - http://www.scopus.com/inward/record.url?scp=84880617859&partnerID=8YFLogxK

U2 - 10.1007/s10958-013-1158-3

DO - 10.1007/s10958-013-1158-3

M3 - Article

AN - SCOPUS:84880617859

VL - 188

SP - 686

EP - 688

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 73460072