DOI

We present a completely declarative approach to synthesizing pattern matching construct implementations based on application of relational programming, a specific form of constraint logic programming. Our approach is based on relational representations of both the high-level semantics of pattern matching and the semantics of an intermediate-level implementation language. This choice makes our approach, in principle, very scalable as we only need to modify the high-level semantics in order to synthesize the implementation of a pattern matching new feature. Our evaluation on a set of small samples, partially taken from existing literature shows, that our framework is capable of synthesizing optimal implementations quickly. Our in-depth stress evaluation on a number of artificial benchmarks, however, has shown the need for future improvements.

Язык оригиналаанглийский
Название основной публикацииProgramming Languages and Systems - 18th Asian Symposium, APLAS 2020, Proceedings
РедакторыBruno C. Oliveira
ИздательSpringer Nature
Страницы293-310
Число страниц18
ISBN (печатное издание)9783030644369
DOI
СостояниеОпубликовано - 2020
Событие18th Asian Symposium on Programming Languages and Systems, APLAS 2020 - Fukuoka, Япония
Продолжительность: 30 ноя 20202 дек 2020

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12470 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция18th Asian Symposium on Programming Languages and Systems, APLAS 2020
Страна/TерриторияЯпония
ГородFukuoka
Период30/11/202/12/20

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 76606597