Standard

Regularity results for nonlocal evolution Venttsel' problems. / Creo, Simone; Lancia, Maria Rosaria; Nazarov, Alexander I. .

в: Fractional Calculus and Applied Analysis, Том 23, № 5, 2020, стр. 1416-1430.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Creo, S, Lancia, MR & Nazarov, AI 2020, 'Regularity results for nonlocal evolution Venttsel' problems', Fractional Calculus and Applied Analysis, Том. 23, № 5, стр. 1416-1430. https://doi.org/10.1515/fca-2020-0070

APA

Creo, S., Lancia, M. R., & Nazarov, A. I. (2020). Regularity results for nonlocal evolution Venttsel' problems. Fractional Calculus and Applied Analysis, 23(5), 1416-1430. https://doi.org/10.1515/fca-2020-0070

Vancouver

Creo S, Lancia MR, Nazarov AI. Regularity results for nonlocal evolution Venttsel' problems. Fractional Calculus and Applied Analysis. 2020;23(5):1416-1430. https://doi.org/10.1515/fca-2020-0070

Author

Creo, Simone ; Lancia, Maria Rosaria ; Nazarov, Alexander I. . / Regularity results for nonlocal evolution Venttsel' problems. в: Fractional Calculus and Applied Analysis. 2020 ; Том 23, № 5. стр. 1416-1430.

BibTeX

@article{f5fc0bf82add400ebee0517b4ec49fb5,
title = "Regularity results for nonlocal evolution Venttsel' problems",
abstract = "We consider parabolic nonlocal Venttsel{\textquoteright} problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.",
keywords = "Primary 35K20, 35B65, Secondary 335R02, 35B45, Venttsel{\textquoteright} problems, nonlocal operators, anisotropic weighted Sobolev spaces, piecewise smooth domains, Venttsel' problems",
author = "Simone Creo and Lancia, {Maria Rosaria} and Nazarov, {Alexander I.}",
note = "Publisher Copyright: {\textcopyright} 2020 Diogenes Co., Sofia 2020.",
year = "2020",
doi = "10.1515/fca-2020-0070",
language = "English",
volume = "23",
pages = "1416--1430",
journal = "Fractional Calculus and Applied Analysis",
issn = "1311-0454",
publisher = "De Gruyter",
number = "5",

}

RIS

TY - JOUR

T1 - Regularity results for nonlocal evolution Venttsel' problems

AU - Creo, Simone

AU - Lancia, Maria Rosaria

AU - Nazarov, Alexander I.

N1 - Publisher Copyright: © 2020 Diogenes Co., Sofia 2020.

PY - 2020

Y1 - 2020

N2 - We consider parabolic nonlocal Venttsel’ problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.

AB - We consider parabolic nonlocal Venttsel’ problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.

KW - Primary 35K20

KW - 35B65

KW - Secondary 335R02

KW - 35B45

KW - Venttsel’ problems

KW - nonlocal operators

KW - anisotropic weighted Sobolev spaces

KW - piecewise smooth domains

KW - Venttsel' problems

UR - https://www.degruyter.com/view/journals/fca/23/5/article-p1416.xml?language=en

UR - http://www.scopus.com/inward/record.url?scp=85096301377&partnerID=8YFLogxK

U2 - 10.1515/fca-2020-0070

DO - 10.1515/fca-2020-0070

M3 - Article

VL - 23

SP - 1416

EP - 1430

JO - Fractional Calculus and Applied Analysis

JF - Fractional Calculus and Applied Analysis

SN - 1311-0454

IS - 5

ER -

ID: 71520778