Standard

Regional Functional Heterogeneity of Aortic Smooth Muscle Cells in Rats. / Levchuk, K. A.; Malashicheva, A. B.

в: Russian Journal of Developmental Biology, Том 48, № 3, 05.2017, стр. 219-223.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Levchuk, KA & Malashicheva, AB 2017, 'Regional Functional Heterogeneity of Aortic Smooth Muscle Cells in Rats', Russian Journal of Developmental Biology, Том. 48, № 3, стр. 219-223. https://doi.org/10.1134/S1062360417030080

APA

Vancouver

Author

Levchuk, K. A. ; Malashicheva, A. B. / Regional Functional Heterogeneity of Aortic Smooth Muscle Cells in Rats. в: Russian Journal of Developmental Biology. 2017 ; Том 48, № 3. стр. 219-223.

BibTeX

@article{ea9de2110ca549fe8f90c5a9abff9bb3,
title = "Regional Functional Heterogeneity of Aortic Smooth Muscle Cells in Rats",
abstract = "The aorta is a magistral artery, which has been traditionally looked upon as a vessel whose properties are invariable throughout its length. However, in the most recent decade, there have been accumulated data that provide evidence that different aorta sections arise from different embryonic origins and that the population of smooth muscle cells making up the vessel's wall is, consequently, heterogenic. Tracing the fate of smooth muscle cells, the basic components of the vessel, with the aid of genetic marking methods revealed that the cells' response to various factors is largely determined by the embryonic origin of a certain cell population. However, functional differences between the smooth muscle cells making up different aorta sections remain poorly understood. The aim of the current work was to compare the functional characteristics of the populations of aortic wall smooth muscle cells obtained from the aorta sections differing by their embryonic origin. Towards this end, we obtained smooth muscle cell cultures from the three aorta sections of linear rats, namely, the neural crest derived ascending thoracic aorta, the somites derived descending thoracic aorta, and splanchnic mesoderm derived abdominal aorta. Using immunocytochemistry and Western blotting, the cells from the different regions of aorta were compared on the basis of smooth muscle actin, vimentin, and SM22 content in them. Cell proliferation rate was estimated using the growth curves method. We have demonstrated that the three smooth muscle cell populations arising from different embryonic origins differ in their morphological characteristics as well as by smooth muscle actin and SM22 content. We have shown that smooth muscle cells from the ascending aorta proliferate more actively than the corresponding cells from the descending thoracic aorta. Thus, the functional properties of the populations of rat aortic smooth muscle cells are different and depend on the embryonic origin of the aorta section from which they were obtained.",
keywords = "smooth muscle cells, aorta, embryonal development, DIVERSITY, ORIGIN, CREST",
author = "Levchuk, {K. A.} and Malashicheva, {A. B.}",
note = "Levchuk, K.A., Malashicheva, A.B. Regional functional heterogeneity of aortic smooth muscle cells in rats. Russ J Dev Biol 48, 219–223 (2017). https://doi.org/10.1134/S1062360417030080",
year = "2017",
month = may,
doi = "10.1134/S1062360417030080",
language = "English",
volume = "48",
pages = "219--223",
journal = "Russian Journal of Developmental Biology",
issn = "1062-3604",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "3",

}

RIS

TY - JOUR

T1 - Regional Functional Heterogeneity of Aortic Smooth Muscle Cells in Rats

AU - Levchuk, K. A.

AU - Malashicheva, A. B.

N1 - Levchuk, K.A., Malashicheva, A.B. Regional functional heterogeneity of aortic smooth muscle cells in rats. Russ J Dev Biol 48, 219–223 (2017). https://doi.org/10.1134/S1062360417030080

PY - 2017/5

Y1 - 2017/5

N2 - The aorta is a magistral artery, which has been traditionally looked upon as a vessel whose properties are invariable throughout its length. However, in the most recent decade, there have been accumulated data that provide evidence that different aorta sections arise from different embryonic origins and that the population of smooth muscle cells making up the vessel's wall is, consequently, heterogenic. Tracing the fate of smooth muscle cells, the basic components of the vessel, with the aid of genetic marking methods revealed that the cells' response to various factors is largely determined by the embryonic origin of a certain cell population. However, functional differences between the smooth muscle cells making up different aorta sections remain poorly understood. The aim of the current work was to compare the functional characteristics of the populations of aortic wall smooth muscle cells obtained from the aorta sections differing by their embryonic origin. Towards this end, we obtained smooth muscle cell cultures from the three aorta sections of linear rats, namely, the neural crest derived ascending thoracic aorta, the somites derived descending thoracic aorta, and splanchnic mesoderm derived abdominal aorta. Using immunocytochemistry and Western blotting, the cells from the different regions of aorta were compared on the basis of smooth muscle actin, vimentin, and SM22 content in them. Cell proliferation rate was estimated using the growth curves method. We have demonstrated that the three smooth muscle cell populations arising from different embryonic origins differ in their morphological characteristics as well as by smooth muscle actin and SM22 content. We have shown that smooth muscle cells from the ascending aorta proliferate more actively than the corresponding cells from the descending thoracic aorta. Thus, the functional properties of the populations of rat aortic smooth muscle cells are different and depend on the embryonic origin of the aorta section from which they were obtained.

AB - The aorta is a magistral artery, which has been traditionally looked upon as a vessel whose properties are invariable throughout its length. However, in the most recent decade, there have been accumulated data that provide evidence that different aorta sections arise from different embryonic origins and that the population of smooth muscle cells making up the vessel's wall is, consequently, heterogenic. Tracing the fate of smooth muscle cells, the basic components of the vessel, with the aid of genetic marking methods revealed that the cells' response to various factors is largely determined by the embryonic origin of a certain cell population. However, functional differences between the smooth muscle cells making up different aorta sections remain poorly understood. The aim of the current work was to compare the functional characteristics of the populations of aortic wall smooth muscle cells obtained from the aorta sections differing by their embryonic origin. Towards this end, we obtained smooth muscle cell cultures from the three aorta sections of linear rats, namely, the neural crest derived ascending thoracic aorta, the somites derived descending thoracic aorta, and splanchnic mesoderm derived abdominal aorta. Using immunocytochemistry and Western blotting, the cells from the different regions of aorta were compared on the basis of smooth muscle actin, vimentin, and SM22 content in them. Cell proliferation rate was estimated using the growth curves method. We have demonstrated that the three smooth muscle cell populations arising from different embryonic origins differ in their morphological characteristics as well as by smooth muscle actin and SM22 content. We have shown that smooth muscle cells from the ascending aorta proliferate more actively than the corresponding cells from the descending thoracic aorta. Thus, the functional properties of the populations of rat aortic smooth muscle cells are different and depend on the embryonic origin of the aorta section from which they were obtained.

KW - smooth muscle cells

KW - aorta

KW - embryonal development

KW - DIVERSITY

KW - ORIGIN

KW - CREST

U2 - 10.1134/S1062360417030080

DO - 10.1134/S1062360417030080

M3 - Article

VL - 48

SP - 219

EP - 223

JO - Russian Journal of Developmental Biology

JF - Russian Journal of Developmental Biology

SN - 1062-3604

IS - 3

ER -

ID: 9457887