This work presents for the first time the possibility of reducing and tuning the work function of field emission cathodes coated with metal oxides by changing the chemical composition of oxide coatings using an example of heat-treated CNT/NiO nanocomposite structures. These cathodes are formulated using carbon nanotube (CNT) arrays that are coated with ultrathin layers of nickel oxide (CNT/NiO) by atomic layer deposition (ALD). It was found that NiO at thicknesses of several nanometers grown on CNTs heat treated at a temperature of 350 °C can change its stoichiometric composition towards the formation of oxygen vacancies, since the Ni3+/Ni2+ peak area ratio increases and the position of the Ni–O peak binding energies shifts as observed using X-ray photoelectron spectroscopy (XPS). According to the secondary electron cut-off, the work function was 4.95 for pristine CNTs and it was found that the work function of deposited NiO layers on CNTs decreased after heat treatment. The decrease in work function occurs as a result of changes in the chemical composition of the oxide film. For the heat-treated CNT/NiO composites, the work function was 4.30 eV with a NiO layer thickness of 7.6 nm, which was less than that for a NiO thin film close to the stoichiometric composition, which had a work function of 4.48 eV. The field emission current–voltage characteristics showed that the fields for producing an emission current density of 10 μA cm−2 were 5.54 V μm−1 for pure nanotubes and 4.32 V μm−1 and 4.19 V μm−1 for NiO-coated CNTs (3.8 and 7.6 nm), respectively. The present study has shown that heat treatment of deposited thin NiO layers on field cathodes is a promising approach to improve the efficiency of field emission cathodes and is a new approach in vacuum nanoelectronics that allows tuning the work function of field emission cathodes.