Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Abel’s quadratures for integrable Hamiltonian systems are defined up to a group law of the corresponding Abelian variety A. If A is isogenous to a direct product of Abelian varieties A ≅ A 1 ×⋯× A k, the group law can be used to construct various Lax matrices on the factors A 1, …, A k. As an example, we discuss two-dimensional reducible Abelian variety A = E + × E −, which is a product of one-dimensional varieties E ± obtained by Euler in his study of the two fixed centres problem, and the Lax matrices on the factors E ±
| Язык оригинала | английский |
|---|---|
| Номер статьи | 5357 |
| Страницы (с-по) | 5357-5372 |
| Число страниц | 16 |
| Журнал | Nonlinearity |
| Том | 35 |
| Номер выпуска | 10 |
| DOI | |
| Состояние | Опубликовано - 6 окт 2022 |
ID: 98924991