Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering. In particular, the recently proposed Mult-VAE model, which used the multinomial likelihood variational autoencoders, has shown excellent results for top-N recommendations. In this work, we propose the Recommender VAE (RecVAE) model that originates from our research on regularization techniques for variational autoencoders. RecVAE introduces several novel ideas to improve Mult-VAE, including a novel composite prior distribution for the latent codes, a new approach to setting the β hyperparameter for the β-VAE framework, and a new approach to training based on alternating updates. In experimental evaluation, we show that RecVAE significantly outperforms previously proposed autoencoder-based models, including Mult-VAE and RaCT, across classical collaborative filtering datasets, and present a detailed ablation study to assess our new developments. Code and models are available at https://github.com/ilya-shenbin/RecVAE.
| Язык оригинала | английский |
|---|---|
| Название основной публикации | WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining |
| Издатель | Association for Computing Machinery |
| Страницы | 528-536 |
| Число страниц | 9 |
| ISBN (электронное издание) | 9781450368223 |
| DOI | |
| Состояние | Опубликовано - 20 янв 2020 |
| Событие | 13th ACM International Conference on Web Search and Data Mining, WSDM 2020 - Houston, Соединенные Штаты Америки Продолжительность: 3 фев 2020 → 7 фев 2020 |
| Название | WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining |
|---|
| конференция | 13th ACM International Conference on Web Search and Data Mining, WSDM 2020 |
|---|---|
| Страна/Tерритория | Соединенные Штаты Америки |
| Город | Houston |
| Период | 3/02/20 → 7/02/20 |
ID: 95169019