DOI

Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering. In particular, the recently proposed Mult-VAE model, which used the multinomial likelihood variational autoencoders, has shown excellent results for top-N recommendations. In this work, we propose the Recommender VAE (RecVAE) model that originates from our research on regularization techniques for variational autoencoders. RecVAE introduces several novel ideas to improve Mult-VAE, including a novel composite prior distribution for the latent codes, a new approach to setting the β hyperparameter for the β-VAE framework, and a new approach to training based on alternating updates. In experimental evaluation, we show that RecVAE significantly outperforms previously proposed autoencoder-based models, including Mult-VAE and RaCT, across classical collaborative filtering datasets, and present a detailed ablation study to assess our new developments. Code and models are available at https://github.com/ilya-shenbin/RecVAE.

Язык оригиналаанглийский
Название основной публикацииWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining
ИздательAssociation for Computing Machinery
Страницы528-536
Число страниц9
ISBN (электронное издание)9781450368223
DOI
СостояниеОпубликовано - 20 янв 2020
Событие13th ACM International Conference on Web Search and Data Mining, WSDM 2020 - Houston, Соединенные Штаты Америки
Продолжительность: 3 фев 20207 фев 2020

Серия публикаций

НазваниеWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining

конференция

конференция13th ACM International Conference on Web Search and Data Mining, WSDM 2020
Страна/TерриторияСоединенные Штаты Америки
ГородHouston
Период3/02/207/02/20

    Предметные области Scopus

  • Компьютерные сети и коммуникации
  • Программный продукт
  • Прикладные компьютерные науки

ID: 95169019