Standard

Rectilinear link diameter and radius in a rectilinear polygonal domain. / Arseneva, Elena; Chiu, Man Kwun; Korman, Matias; Markovic, Aleksandar; Okamoto, Yoshio; Ooms, Aurélien; Van Renssen, André; Roeloffzen, Marcel.

29th International Symposium on Algorithms and Computation, ISAAC 2018. ред. / Chung-Shou Liao; Wen-Lian Hsu; Der-Tsai Lee. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. стр. 58:1-58:13 (Leibniz International Proceedings in Informatics, LIPIcs; Том 123).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Arseneva, E, Chiu, MK, Korman, M, Markovic, A, Okamoto, Y, Ooms, A, Van Renssen, A & Roeloffzen, M 2018, Rectilinear link diameter and radius in a rectilinear polygonal domain. в C-S Liao, W-L Hsu & D-T Lee (ред.), 29th International Symposium on Algorithms and Computation, ISAAC 2018. Leibniz International Proceedings in Informatics, LIPIcs, Том. 123, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, стр. 58:1-58:13, 29th International Symposium on Algorithms and Computation, ISAAC 2018, Jiaoxi, Yilan, Китайская Провинция Тайвань, 16/12/18. https://doi.org/10.4230/LIPIcs.ISAAC.2018.58

APA

Arseneva, E., Chiu, M. K., Korman, M., Markovic, A., Okamoto, Y., Ooms, A., Van Renssen, A., & Roeloffzen, M. (2018). Rectilinear link diameter and radius in a rectilinear polygonal domain. в C-S. Liao, W-L. Hsu, & D-T. Lee (Ред.), 29th International Symposium on Algorithms and Computation, ISAAC 2018 (стр. 58:1-58:13). (Leibniz International Proceedings in Informatics, LIPIcs; Том 123). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ISAAC.2018.58

Vancouver

Arseneva E, Chiu MK, Korman M, Markovic A, Okamoto Y, Ooms A и пр. Rectilinear link diameter and radius in a rectilinear polygonal domain. в Liao C-S, Hsu W-L, Lee D-T, Редакторы, 29th International Symposium on Algorithms and Computation, ISAAC 2018. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2018. стр. 58:1-58:13. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.ISAAC.2018.58

Author

Arseneva, Elena ; Chiu, Man Kwun ; Korman, Matias ; Markovic, Aleksandar ; Okamoto, Yoshio ; Ooms, Aurélien ; Van Renssen, André ; Roeloffzen, Marcel. / Rectilinear link diameter and radius in a rectilinear polygonal domain. 29th International Symposium on Algorithms and Computation, ISAAC 2018. Редактор / Chung-Shou Liao ; Wen-Lian Hsu ; Der-Tsai Lee. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. стр. 58:1-58:13 (Leibniz International Proceedings in Informatics, LIPIcs).

BibTeX

@inproceedings{0430e066885b4f4a8e5673014f26adf8,
title = "Rectilinear link diameter and radius in a rectilinear polygonal domain",
abstract = "We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(nω, n2 + nhlog h + χ2)) time, where ω < 2.373 denotes the matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n2 log n) time.",
keywords = "Diameter, Polygonal domain, Radius, Rectilinear link distance",
author = "Elena Arseneva and Chiu, {Man Kwun} and Matias Korman and Aleksandar Markovic and Yoshio Okamoto and Aur{\'e}lien Ooms and {Van Renssen}, Andr{\'e} and Marcel Roeloffzen",
year = "2018",
month = dec,
day = "1",
doi = "10.4230/LIPIcs.ISAAC.2018.58",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "58:1--58:13",
editor = "Chung-Shou Liao and Wen-Lian Hsu and Der-Tsai Lee",
booktitle = "29th International Symposium on Algorithms and Computation, ISAAC 2018",
address = "Germany",
note = "29th International Symposium on Algorithms and Computation, ISAAC 2018 ; Conference date: 16-12-2018 Through 19-12-2018",

}

RIS

TY - GEN

T1 - Rectilinear link diameter and radius in a rectilinear polygonal domain

AU - Arseneva, Elena

AU - Chiu, Man Kwun

AU - Korman, Matias

AU - Markovic, Aleksandar

AU - Okamoto, Yoshio

AU - Ooms, Aurélien

AU - Van Renssen, André

AU - Roeloffzen, Marcel

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(nω, n2 + nhlog h + χ2)) time, where ω < 2.373 denotes the matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n2 log n) time.

AB - We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(nω, n2 + nhlog h + χ2)) time, where ω < 2.373 denotes the matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n2 log n) time.

KW - Diameter

KW - Polygonal domain

KW - Radius

KW - Rectilinear link distance

UR - http://www.scopus.com/inward/record.url?scp=85063694845&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.ISAAC.2018.58

DO - 10.4230/LIPIcs.ISAAC.2018.58

M3 - Conference contribution

AN - SCOPUS:85063694845

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 58:1-58:13

BT - 29th International Symposium on Algorithms and Computation, ISAAC 2018

A2 - Liao, Chung-Shou

A2 - Hsu, Wen-Lian

A2 - Lee, Der-Tsai

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

T2 - 29th International Symposium on Algorithms and Computation, ISAAC 2018

Y2 - 16 December 2018 through 19 December 2018

ER -

ID: 48856835