Документы

  • 342-347-paper-63

    Конечная издательская версия, 477 KB, Документ PDF

The present paper aims to develop a reconstruction method for the right side of a system of ODEs in polynomial form from sparse and irregularly distributed time-series data. This method doesn’t require any additional knowledge about the system and has several steps. The scarcity of the data through the trajectory length is compensated by the artificially generated points using approximating trigonometrical polynomials. Then, we get uniformly spread data points with the step conditioned by the desired accuracy of derivatives approximation in ODEs. This let to further use conventional reconstruction algorithms described in the literature. We test the proposed method on time series data generated from known ODE models in a two-dimensional system. We quantify the accuracy of the reconstruction for the system of ODEs as a function of the amount of data used by the method. Further, we solve the reconstructed system of ODEs and compare the solution to the original time series data. The method developed and validated here can now be applied to large data sets for physical and biological systems for which there is no known system of ODEs.
Язык оригиналаанглийский
Название основной публикацииProceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2021), Dubna, Russia, July 5-9, 2021
РедакторыVladimir Korenkov, Andrey Nechaevskiy, Tatiana Zaikina
ИздательRWTH Aahen University
Страницы342-347
Том3041
СостояниеОпубликовано - 13 дек 2021
Событие9th International Conference "Distributed Computing and Grid-Technologies in Science and Education", GRID 2021 - Dubna, Российская Федерация
Продолжительность: 5 июл 20219 июл 2021
Номер конференции: 9
https://indico.jinr.ru/event/1086/overview

Серия публикаций

НазваниеCEUR Workshop Proceedings
Том3041

конференция

конференция9th International Conference "Distributed Computing and Grid-Technologies in Science and Education", GRID 2021
Сокращенное названиеGRID'2021
Страна/TерриторияРоссийская Федерация
ГородDubna
Период5/07/219/07/21
Сайт в сети Internet

ID: 87925616