DOI

In the process of conducting various physical experiments, a certain set of data is accumulated. Processing and interpreting the simulation results is a fundamental task for analyzing the behaviour of the model, predicting its future actions, and managing the entire system. This paper provides an overview of the currently existing approaches to identification of dynamic systems models: white, gray and black boxes. Special attention is paid to methods based on neural networks. The article suggests a combined approach that allows both preserving a physical consistency of the model and using modern methods for learning from data. A polynomial neural network of a special architecture, approximating the general solution of the system of ordinary differential equations (ODEs) in the form of Taylor map is considered. This model can work in the case of a small amount of initial data, which is a problem when exploiting traditional machine learning methods, and neural networks in particular. The paper presents a new learning approach for PNN based on two steps: reconstructing an ODEs system based on a single trajectory, and identifying a general solution to initialize the weights of a neural network. Neural network representation allows using traditional learning algorithms for additional fine-turning the weights in line with new measured data. A toy example of a nonlinear deflector demonstrates the power and generalization ability of the proposed algorithm.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2021 - 21st International Conference, Proceedings
Подзаголовок основной публикации21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part VIII
РедакторыOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blečić, David Taniar, Bernady O. Apduhan, Ana Maria Rocha, Eufemia Tarantino, Carmelo Maria Torre
ИздательSpringer Nature
Страницы360-369
Число страниц10
ISBN (электронное издание)978-3-030-87010-2
ISBN (печатное издание)978-3-030-87009-6
DOI
СостояниеОпубликовано - 10 сен 2021
СобытиеInternational Conference on Computational Science and Its Applications - Кальяри, Италия
Продолжительность: 13 сен 202116 сен 2021
Номер конференции: 21

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12956 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференцияInternational Conference on Computational Science and Its Applications
Сокращенное названиеICCSA
Страна/TерриторияИталия
ГородКальяри
Период13/09/2116/09/21

    Предметные области Scopus

  • Искусственный интеллект
  • Моделирование и симуляция
  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 85436432