DOI

In the paper we consider first order stabilized Runge-Kutta-Chebyshev methods (RKCs) application to discrete delay differential equations (DDEs) and perform a linear stability analysis studying the standard linear test equation with real coefficients. We try two variants of RKCs extension for DDEs: the first, suitable for constant delays and constant time-steps; the second, with linear interpolation between the time-mesh points. It is shown that delay-independent stability regions are larger if using interpolation. As for ordinary differential equations RKCs have points of stability vanishing along the real values of the coefficient of the non-delayed term. We use damped RKCs to improve the stability regions and find an "optimal" damping factor to maximize the numerical stabiity region coverage of the exact stability domain. All the results are confirmed by numerical simulations.

Язык оригиналаанглийский
Название основной публикацииInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2020
РедакторыT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras
ИздательAmerican Institute of Physics
ISBN (электронное издание)9780735441828
ISBN (печатное издание)9780735441828
DOI
СостояниеОпубликовано - 6 апр 2022
СобытиеInternational Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020 - Rhodes, Греция
Продолжительность: 17 сен 202023 сен 2020

Серия публикаций

НазваниеAIP Conference Proceedings
Том2425
ISSN (печатное издание)0094-243X
ISSN (электронное издание)1551-7616

конференция

конференцияInternational Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020
Страна/TерриторияГреция
ГородRhodes
Период17/09/2023/09/20

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 95013993