Standard

Realizability of combinatorial types of convex polyhedra over fields. / Mnev, N. E.

в: Journal of Soviet Mathematics, Том 28, № 4, 01.02.1985, стр. 606-609.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Mnev, NE 1985, 'Realizability of combinatorial types of convex polyhedra over fields', Journal of Soviet Mathematics, Том. 28, № 4, стр. 606-609. https://doi.org/10.1007/BF02104991

APA

Vancouver

Author

Mnev, N. E. / Realizability of combinatorial types of convex polyhedra over fields. в: Journal of Soviet Mathematics. 1985 ; Том 28, № 4. стр. 606-609.

BibTeX

@article{49a883440017470b9f376dd6ddd3049e,
title = "Realizability of combinatorial types of convex polyhedra over fields",
abstract = "It is shown that the minimal subfield of the field of real numbers over which all real combinatorial types of convex polyhedra can be realized is the field of all real algebraic numbers. {\textcopyright} 1985 Plenum Publishing Corporation.",
author = "Mnev, {N. E.}",
year = "1985",
month = feb,
day = "1",
doi = "10.1007/BF02104991",
language = "English",
volume = "28",
pages = "606--609",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Realizability of combinatorial types of convex polyhedra over fields

AU - Mnev, N. E.

PY - 1985/2/1

Y1 - 1985/2/1

N2 - It is shown that the minimal subfield of the field of real numbers over which all real combinatorial types of convex polyhedra can be realized is the field of all real algebraic numbers. © 1985 Plenum Publishing Corporation.

AB - It is shown that the minimal subfield of the field of real numbers over which all real combinatorial types of convex polyhedra can be realized is the field of all real algebraic numbers. © 1985 Plenum Publishing Corporation.

UR - http://www.scopus.com/inward/record.url?scp=34250111551&partnerID=8YFLogxK

U2 - 10.1007/BF02104991

DO - 10.1007/BF02104991

M3 - Article

AN - SCOPUS:34250111551

VL - 28

SP - 606

EP - 609

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 126277726