Документы

DOI

We treat the interpolation problem { f (x j ) = y j } Nj=1 for polynomial and rational functions. Developing the approach originated by C. Jacobi, we represent the interpolants by virtue of the Hankel polynomials generated by the sequences of special symmetric functions of the data set like {∑ Nj=1 xkj y j /W (x j )} k ∈N and {∑ Nj=1 xkj /(y j W (x j ))} k ∈N; here, W(x) = ∏ Nj=1 (x − x j ). We also review the results by Jacobi, Joachimsthal, Kronecker and Frobenius on the recursive procedure for computation of the sequence of Hankel polynomials. The problem of evaluation of the resultant of polynomials p(x) and q(x) given a set of values {p(x j )/q(x j )} Nj=1 is also tackled within the framework of this approach. An effective procedure is suggested for recomputation of rational interpolants in case of extension of the data set by an extra point.

Переведенное названиеРациональная интерполяция: реминисценция метода Якоби.
Язык оригиналаанглийский
Номер статьи1401
Число страниц35
ЖурналSymmetry
Том13
Номер выпуска8
DOI
СостояниеОпубликовано - 1 авг 2021

    Предметные области Scopus

  • Компьютерные науки (разное)
  • Химия (разное)
  • Математика (все)
  • Физика и астрономия (разное)

ID: 84400875