Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. / Afanasenkau, Dzmitry; Kalinina, Daria; Lyakhovetskii, Vsevolod; Tondera, Christoph; Gorsky, Oleg; Moosavi, Seyyed; Pavlova, Natalia; Merkulyeva, Natalia; Kalueff, Allan V.; Minev, Ivan R.; Musienko, Pavel.
в: Nature Biomedical Engineering, Том 4, № 10, 01.10.2020, стр. 1010-1022.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces
AU - Afanasenkau, Dzmitry
AU - Kalinina, Daria
AU - Lyakhovetskii, Vsevolod
AU - Tondera, Christoph
AU - Gorsky, Oleg
AU - Moosavi, Seyyed
AU - Pavlova, Natalia
AU - Merkulyeva, Natalia
AU - Kalueff, Allan V.
AU - Minev, Ivan R.
AU - Musienko, Pavel
N1 - Funding Information: We acknowledge funding from the following sources: the European Research Council (804005; IntegraBrain), Saint-Petersburg State University (project 51134206; funding to O.G. and N.M. for animal facility and biocompatibility studies, and validation of the implants on in vivo models), Technische Universität Dresden, the Russian Foundation for Basic Research (grants 20-015-00568-a (for the urodynamic study) and 18-33-20062-mol_a_ved (for developing the optimal electrode array configuration)), Deutsche Forschungsgemeinschaft (MI 2117/1-1) and the Volkswagen Foundation (Freigeist 91 690). We thank D. E. Korzhevskiy (immunohistochemistry), Y. I. Sysoev (zebrafish model), A. V. Goriainova (functional tests) and T. Kurth (electron microscopy) for help and expertise. Publisher Copyright: © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Customized soft electrode arrays that are well adjusted to specific anatomical environments, functions and experimental models can be rapidly prototyped via the robotically controlled deposition of conductive inks and insulating inks.Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
AB - Customized soft electrode arrays that are well adjusted to specific anatomical environments, functions and experimental models can be rapidly prototyped via the robotically controlled deposition of conductive inks and insulating inks.Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
KW - SPINAL-CORD
KW - DURA-MATER
KW - STIMULATION
KW - DECEREBRATE
KW - LOCOMOTION
KW - MICROGLIA
KW - BALANCE
KW - BLADDER
KW - SYSTEM
KW - GAIT
UR - http://www.scopus.com/inward/record.url?scp=85091197760&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/72007942-a78d-38b8-b9b3-287d5d8af55e/
U2 - 10.1038/s41551-020-00615-7
DO - 10.1038/s41551-020-00615-7
M3 - Article
AN - SCOPUS:85091197760
VL - 4
SP - 1010
EP - 1022
JO - Nature Biomedical Engineering
JF - Nature Biomedical Engineering
SN - 2157-846X
IS - 10
ER -
ID: 70098456