DOI

  • Olga L. Gladkikh
  • Svetlana A. Romanenko
  • Natalya A. Lemskaya
  • Natalya A. Serdyukova
  • Patricia C.M. O'Brien
  • Julia M. Kovalskaya
  • Antonina V. Smorkatcheva
  • Feodor N. Golenishchev
  • Polina L. Perelman
  • Vladimir A. Trifonov
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang
  • Alexander S. Graphodatsky

The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY.

Язык оригиналаанглийский
Номер статьиe0167653
ЖурналPLoS ONE
Том11
Номер выпуска12
DOI
СостояниеОпубликовано - дек 2016

    Предметные области Scopus

  • Общие

ID: 100699013