DOI

This paper deals with a probabilistic approach for online system identification in MPC models with parameter uncertainties. The problem is to construct robust control in probabilistic sense for all possible values from some predefined set. In that case it is a good way to shrink the set over time in order to get better sets. The proposed algorithm is based on the modified LSCR (Leave-out Sign-dominant Correlation Regions) and applied to state space model used in MPC. In the paper we address a convergence of the algorithm over time, which required significant modifications comparing to our previous work. Practical part demonstrates in more detail with Matlab and CVX how to obtain smaller control for a nonminimal-phase second order plant with two unknown parameters and investigates convergence of confidence regions over time.

Язык оригиналаАнглийский
Название основной публикации18th European Control Conference, ECC 2019
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы4307-4312
Число страниц6
ISBN (электронное издание)9783907144008
ISBN (печатное издание)9783907144008
DOI
СостояниеОпубликовано - 2019
Событие18th European Control Conference, ECC 2019 - Naples, Италия
Продолжительность: 25 июн 201928 июн 2019

конференция

конференция18th European Control Conference, ECC 2019
Страна/TерриторияИталия
ГородNaples
Период25/06/1928/06/19

    Предметные области Scopus

  • Контрольно-измерительные инструменты
  • Теория оптимизации

ID: 47479859