DOI

The Hausdorff Voronoi diagram of clusters of points in the plane is a generalization of Voronoi diagrams based on the Hausdorff distance function. Its combinatorial complexity is O(n+m), where n is the total number of points and m is the number of crossings between the input clusters (formula presented) the number of clusters is k. We present efficient algorithms to construct this diagram via the randomized incremental construction (RIC) framework For non-crossing clusters (m=0), our algorithm runs in expected (formula presented) time and deterministic O(n) space. For arbitrary clusters the algorithm runs in expected (formula presented) space. The two algorithms can be combined in a crossing-oblivious scheme within the same bounds. We show how to apply the RIC framework efficiently to handle non-standard characteristics of generalized Voronoi diagrams, including sites (and bisectors) of non-constant complexity, sites that are not enclosed in their Voronoi regions, empty Voronoi regions, and finally, disconnected bisectors and Voronoi regions. The diagram finds direct applications.

Язык оригиналаанглийский
Название основной публикацииComputing and Combinatorics - 23rd International Conference, COCOON 2017, Proceedings
РедакторыYixin Cao, Jianer Chen
ИздательSpringer Nature
Страницы321-332
Число страниц12
ISBN (печатное издание)9783319623887
DOI
СостояниеОпубликовано - 1 янв 2017
Опубликовано для внешнего пользованияДа
Событие23rd International Conference on Computing and Combinatorics, COCOON 2017 - Hong Kong, Китай
Продолжительность: 3 авг 20175 авг 2017

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том10392 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция23rd International Conference on Computing and Combinatorics, COCOON 2017
Страна/TерриторияКитай
ГородHong Kong
Период3/08/175/08/17

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 38614848