This paper considers the possibilities of randomized controls for designing confidence regions for unknown parameters. The assumptions about external noise that affect a linear plant are reduced to a minimum: external noise can virtually be arbitrary, but, independently of it, the user must be able to add test perturbations through the input channel. Based on a finite set of observations, we suggest a new procedure which can be used in adaptive control schemes. It has been developed in the general framework of "counting of leave-out sign-dominant correlation regions" (LSCR), which is mostly being promoted by M. Campi et al. for identification problems. The procedure returns confidence regions which are guaranteed to contain true parameters with a user-chosen probability. The theoretical results are illustrated by an example of a nonminimum-phase second-order plant.

Язык оригиналаАнглийский
Название основной публикации2012 AMERICAN CONTROL CONFERENCE (ACC)
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы851-856
Число страниц6
ISBN (печатное издание)978-1-4577-1095-7
СостояниеОпубликовано - 2012
СобытиеAmerican Control Conference (ACC) - Montreal, Канада
Продолжительность: 27 июн 201229 июн 2012

Серия публикаций

НазваниеProceedings of the American Control Conference
ИздательIEEE COMPUTER SOC
ISSN (печатное издание)0743-1619

конференция

конференцияAmerican Control Conference (ACC)
Страна/TерриторияКанада
ГородMontreal
Период27/06/1229/06/12

ID: 74016063