Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Quiet ionospheric d-region (Qiondr) model based on vlf/lf observations. / Nina, Aleksandra; Nico, Giovanni; Mitrović, Srđan T.; Čadež, Vladimir M.; Milošević, Ivana R.; Radovanović, Milan; Popović, Luka.
в: Remote Sensing, Том 13, № 3, 01.01.2021, стр. 1-24.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Quiet ionospheric d-region (Qiondr) model based on vlf/lf observations
AU - Nina, Aleksandra
AU - Nico, Giovanni
AU - Mitrović, Srđan T.
AU - Čadež, Vladimir M.
AU - Milošević, Ivana R.
AU - Radovanović, Milan
AU - Popović, Luka
PY - 2021/1/1
Y1 - 2021/1/1
N2 - The ionospheric D-region affects propagation of electromagnetic waves including ground-based signals and satellite signals during its intensive disturbances. Consequently, the modeling of electromagnetic propagation in the D-region is important in many technological domains. One of sources of uncertainty in the modeling of the disturbed D-region is the poor knowledge of its parameters in the quiet state at the considered location and time period. We present the Quiet Ionospheric D-Region (QIonDR) model based on data collected in the ionospheric D-region remote sensing by very low/low frequency (VLF/LF) signals and the Long-Wave Propagation Capability (LWPC) numerical model. The QIonDR model provides both Wait’s parameters and the electron density in the D-region area of interest at a given daytime interval. The proposed model consists of two steps. In the first step, Wait’s parameters are modeled during the quiet midday periods as a function of the daily sunspot number, related to the long-term variations during solar cycle, and the seasonal parameter, providing the seasonal variations. In the second step, the output of the first step is used to model Wait’s parameters during the whole daytime. The proposed model is applied to VLF data acquired in Serbia and related to the DHO and ICV signals emitted in Germany and Italy, respectively. As a result, the proposed methodology provides a numerical tool to model the daytime Wait’s parameters over the middle and low latitudes and an analytical expression valid over a part of Europe for midday parameters.
AB - The ionospheric D-region affects propagation of electromagnetic waves including ground-based signals and satellite signals during its intensive disturbances. Consequently, the modeling of electromagnetic propagation in the D-region is important in many technological domains. One of sources of uncertainty in the modeling of the disturbed D-region is the poor knowledge of its parameters in the quiet state at the considered location and time period. We present the Quiet Ionospheric D-Region (QIonDR) model based on data collected in the ionospheric D-region remote sensing by very low/low frequency (VLF/LF) signals and the Long-Wave Propagation Capability (LWPC) numerical model. The QIonDR model provides both Wait’s parameters and the electron density in the D-region area of interest at a given daytime interval. The proposed model consists of two steps. In the first step, Wait’s parameters are modeled during the quiet midday periods as a function of the daily sunspot number, related to the long-term variations during solar cycle, and the seasonal parameter, providing the seasonal variations. In the second step, the output of the first step is used to model Wait’s parameters during the whole daytime. The proposed model is applied to VLF data acquired in Serbia and related to the DHO and ICV signals emitted in Germany and Italy, respectively. As a result, the proposed methodology provides a numerical tool to model the daytime Wait’s parameters over the middle and low latitudes and an analytical expression valid over a part of Europe for midday parameters.
KW - D-region
KW - Ionosphere
KW - Modeling
KW - Quiet conditions
KW - Remote sensing
KW - VLF/LF signals
UR - http://www.scopus.com/inward/record.url?scp=85100040195&partnerID=8YFLogxK
U2 - 10.3390/rs13030483
DO - 10.3390/rs13030483
M3 - Article
AN - SCOPUS:85100040195
VL - 13
SP - 1
EP - 24
JO - Remote Sensing
JF - Remote Sensing
SN - 2072-4292
IS - 3
ER -
ID: 114330058