Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Quasi-geostrophic wave motion in a rotating layer of electrically conducting fluid with consideration of dissipation effects. / Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.
Computational and Information Technologies in Science, Engineering and Education - 9th International Conference, CITech 2018, Revised Selected Papers. ред. / Yuri Shokin; Zhassulan Shaimardanov. Springer Nature, 2019. стр. 181-188 (Communications in Computer and Information Science; Том 998).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Quasi-geostrophic wave motion in a rotating layer of electrically conducting fluid with consideration of dissipation effects
AU - Peregudin, S. I.
AU - Peregudina, E. S.
AU - Kholodova, S. E.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The purpose of the paper is to obtain an analytic solution of the boundary-value problem for the system of nonlinear partial differential equations that model magnetohydrodynamic perturbations in a layer of perfect electrically conducting rotating fluid bounded by space- and time-varying surfaces with due account of the dissipative factors of the magnetic field diffusion, the inertia forces, and the Coriolis force. We construct an exact solution of the reduced nonlinear equations that describes the propagation of waves of finite amplitude in an infinite horizontally extended electrically conducting fluid when the surface bounding the layer has approximatively constant gradient over distances of the order of the wavelength.
AB - The purpose of the paper is to obtain an analytic solution of the boundary-value problem for the system of nonlinear partial differential equations that model magnetohydrodynamic perturbations in a layer of perfect electrically conducting rotating fluid bounded by space- and time-varying surfaces with due account of the dissipative factors of the magnetic field diffusion, the inertia forces, and the Coriolis force. We construct an exact solution of the reduced nonlinear equations that describes the propagation of waves of finite amplitude in an infinite horizontally extended electrically conducting fluid when the surface bounding the layer has approximatively constant gradient over distances of the order of the wavelength.
KW - Magnetic field diffusion
KW - Magnetohydrodynamic processes
KW - Quasi-geostrophic motion
KW - Rotating fluid
UR - http://www.scopus.com/inward/record.url?scp=85062495741&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/quasigeostrophic-wave-motion-rotating-layer-electrically-conducting-fluid-consideration-dissipation
U2 - 10.1007/978-3-030-12203-4_18
DO - 10.1007/978-3-030-12203-4_18
M3 - Conference contribution
AN - SCOPUS:85062495741
SN - 9783030122027
T3 - Communications in Computer and Information Science
SP - 181
EP - 188
BT - Computational and Information Technologies in Science, Engineering and Education - 9th International Conference, CITech 2018, Revised Selected Papers
A2 - Shokin, Yuri
A2 - Shaimardanov, Zhassulan
PB - Springer Nature
T2 - 9th International Conference on Computational and Information Technologies in Science, Engineering and Education, CITech 2018
Y2 - 25 September 2018 through 28 September 2018
ER -
ID: 39496280