Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Quantitative Analysis of Informational Significance of SWEBOK Knowledge Areas in IEEE/ACM Curriculum Guidelines. / Юрков, Александр Васильевич; Халин, Владимир Георгиевич; Шилова, Ольга Николаевна; Abran, Alain.
System Analysis in Engineering and Control. ред. / Yuriy S. Vasiliev; Nataliya D. Pankratova; Violetta N. Volkova; Olga D. Shipunova; Nikolay N. Lyabakh. Springer Nature, 2022. стр. 561-573 (Lecture Notes in Networks and Systems; Том 442 LNNS).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Quantitative Analysis of Informational Significance of SWEBOK Knowledge Areas in IEEE/ACM Curriculum Guidelines
AU - Юрков, Александр Васильевич
AU - Халин, Владимир Георгиевич
AU - Шилова, Ольга Николаевна
AU - Abran, Alain
N1 - Conference code: 25
PY - 2022/1/1
Y1 - 2022/1/1
N2 - This paper reports on a quantitative analysis of the informational significance of SWEBOK knowledgeareas in the curriculum guidelines developed as IEEE/ACM recommendations for educational programs insoftware engineering. The analysis uses a representation of the hierarchical structure of educational contentin the form of an oriented bipartite hypergraph. The out-degrees of the vertices of the graph transitiveclosure are selected as the quantitative characteristics of the studied topics, reflecting their mutualinfluence within educational programs. A feature of the computational algorithm is the representation ofthe transitive closure matrix in the form of a sparse matrix of a block structure, the nonzero blocks ofwhich have a significantly lower dimension. The graph approach to quantitative analysis of SWEBOKknowledge areas, is a novel approach to curricular analytics: it is not limited to the software engineeringexample presented and may be useful for the development of an evidence-based educational policy.
AB - This paper reports on a quantitative analysis of the informational significance of SWEBOK knowledgeareas in the curriculum guidelines developed as IEEE/ACM recommendations for educational programs insoftware engineering. The analysis uses a representation of the hierarchical structure of educational contentin the form of an oriented bipartite hypergraph. The out-degrees of the vertices of the graph transitiveclosure are selected as the quantitative characteristics of the studied topics, reflecting their mutualinfluence within educational programs. A feature of the computational algorithm is the representation ofthe transitive closure matrix in the form of a sparse matrix of a block structure, the nonzero blocks ofwhich have a significantly lower dimension. The graph approach to quantitative analysis of SWEBOKknowledge areas, is a novel approach to curricular analytics: it is not limited to the software engineeringexample presented and may be useful for the development of an evidence-based educational policy.
KW - Software engineering
KW - Curriculum
KW - Hypergraphs
KW - Computations on matrices
KW - Numerical algorithms
KW - Computations on matrices
KW - Curriculum
KW - Hypergraphs
KW - Numerical algorithms
KW - Software engineering
UR - https://link.springer.com/book/9783030988333
UR - https://www.beck-shop.de/vasiliev-pankratova-volkova-shipunova-lyabakh-lecture-notes-networks-systems-442-system-analysis-engineering-control/product/33780697
UR - http://www.scopus.com/inward/record.url?scp=85128939187&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/1f85f378-8f65-39c4-be91-715d782a01b9/
U2 - 10.1007/978-3-030-98832-6_49
DO - 10.1007/978-3-030-98832-6_49
M3 - Conference contribution
SN - 978-3-030-98831-9
T3 - Lecture Notes in Networks and Systems
SP - 561
EP - 573
BT - System Analysis in Engineering and Control
A2 - Vasiliev, Yuriy S.
A2 - Pankratova, Nataliya D.
A2 - Volkova, Violetta N.
A2 - Shipunova, Olga D.
A2 - Lyabakh, Nikolay N.
PB - Springer Nature
Y2 - 13 October 2021 through 14 October 2021
ER -
ID: 93322782