Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca 2+ and PO 4 3- ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is accompanied by a remarkable molecular reconfiguration, although little is known about this process's extracellular signatures. Here, we applied ultra-high performance liquid chromatography-tandem mass spectrometry to perform a secretome-wide profiling of the cell culture supernatant from primary human coronary artery ECs (HCAECs) and internal thoracic artery ECs (HITAECs) treated with primary CPPs (CPP-P), secondary CPPs (CPP-S), magnesiprotein particles (MPPs), or Ca 2+/Mg 2+-free Dulbecco's phosphate-buffered saline (DPBS) for 24 h. Incubation with CPP-P/CPP-S significantly altered the profiles of secreted proteins, delineating physiological and pathological endothelial secretomes. Neither pathway enrichment analysis nor the interrogation of protein-protein interactions detected extracellular matrix- and basement membrane-related molecular terms in the protein datasets from CPP-P/CPP-S-treated ECs. Both proteomic profiling and enzyme-linked immunosorbent assay identified an increased level of protectin (CD59) and reduced levels of osteonectin (SPARC), perlecan (HSPG2), and fibronectin (FN1) in the cell culture supernatant upon CPP-P/CPP-S treatment. Elevated soluble CD59 and decreased release of basement membrane components might be considered as potential signs of dysfunctional endothelium.
Язык оригинала | английский |
---|---|
Номер статьи | 11382 |
Журнал | International Journal of Molecular Sciences |
Том | 25 |
Номер выпуска | 21 |
DOI | |
Состояние | Опубликовано - 23 окт 2024 |
ID: 126354091