Standard

Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV. / ALICE Collaboration.

в: European Physical Journal C, Том 81, № 7, 584, 01.07.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

ALICE Collaboration. / Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV. в: European Physical Journal C. 2021 ; Том 81, № 7.

BibTeX

@article{5dcf3b7ebf14453280b464f4de08f2c1,
title = "Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV",
abstract = "The first measurement of the production of pions, kaons, (anti-)protons and ϕ mesons at midrapidity in Xe–Xe collisions at sNN=5.44TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the ϕ-to-pion ratio with increasing final-state multiplicity.",
author = "{ALICE Collaboration} and S. Acharya and D. Adamov{\'a} and A. Adler and J. Adolfsson and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and S. Ahmad and Ahn, {S. U.} and Z. Akbar and A. Akindinov and M. Al-Turany and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and Alfanda, {H. M.} and {Alfaro Molina}, R. and B. Ali and Y. Ali and A. Alici and N. Alizadehvandchali and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and Anaam, {M. N.} and C. Andrei and D. Andreou and A. Andronic and V. Anguelov and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and C. Anuj and N. Apadula and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and R. Arnaldi and S. Belokurova and A. Erokhin and G. Feofilov and V. Kovalenko and T. Lazareva and D. Nesterov and V. Vechernin and A. Zarochentsev and V. Zherebchevskii",
note = "Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2021",
month = jul,
day = "1",
doi = "10.1140/epjc/s10052-021-09304-4",
language = "English",
volume = "81",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "7",

}

RIS

TY - JOUR

T1 - Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Adamová, D.

AU - Adler, A.

AU - Adolfsson, J.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmad, S.

AU - Ahn, S. U.

AU - Akbar, Z.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfanda, H. M.

AU - Alfaro Molina, R.

AU - Ali, B.

AU - Ali, Y.

AU - Alici, A.

AU - Alizadehvandchali, N.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Anaam, M. N.

AU - Andrei, C.

AU - Andreou, D.

AU - Andronic, A.

AU - Anguelov, V.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Anuj, C.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Arnaldi, R.

AU - Belokurova, S.

AU - Erokhin, A.

AU - Feofilov, G.

AU - Kovalenko, V.

AU - Lazareva, T.

AU - Nesterov, D.

AU - Vechernin, V.

AU - Zarochentsev, A.

AU - Zherebchevskii, V.

N1 - Publisher Copyright: © 2021, The Author(s).

PY - 2021/7/1

Y1 - 2021/7/1

N2 - The first measurement of the production of pions, kaons, (anti-)protons and ϕ mesons at midrapidity in Xe–Xe collisions at sNN=5.44TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the ϕ-to-pion ratio with increasing final-state multiplicity.

AB - The first measurement of the production of pions, kaons, (anti-)protons and ϕ mesons at midrapidity in Xe–Xe collisions at sNN=5.44TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the ϕ-to-pion ratio with increasing final-state multiplicity.

UR - http://www.scopus.com/inward/record.url?scp=85111720087&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/22e6ddb6-06fc-3d8e-84f1-25cbb29556d6/

U2 - 10.1140/epjc/s10052-021-09304-4

DO - 10.1140/epjc/s10052-021-09304-4

M3 - Article

AN - SCOPUS:85111720087

VL - 81

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 7

M1 - 584

ER -

ID: 85640839