Standard

Preservation of Logarithmic Convexity by Positive Operators. / Vinogradov, O. L.; Ulitskaya, A. Yu.

в: Journal of Mathematical Sciences (United States), Том 213, № 4, 2016, стр. 504-509.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vinogradov, OL & Ulitskaya, AY 2016, 'Preservation of Logarithmic Convexity by Positive Operators', Journal of Mathematical Sciences (United States), Том. 213, № 4, стр. 504-509. https://doi.org/10.1007/s10958-016-2721-5

APA

Vancouver

Author

Vinogradov, O. L. ; Ulitskaya, A. Yu. / Preservation of Logarithmic Convexity by Positive Operators. в: Journal of Mathematical Sciences (United States). 2016 ; Том 213, № 4. стр. 504-509.

BibTeX

@article{10aaf42f75b74b19b04c89064639d935,
title = "Preservation of Logarithmic Convexity by Positive Operators",
abstract = "We show that the Sz{\'a}sz–Mirakyan and Baskakov operators preserve the logarithmic convexity of functions, whereas the Bernstein and Kantorovich operators do not possess this property.",
keywords = "convex function, Positive Root, Identity Operator, Positive Operator, Approximation Theory",
author = "Vinogradov, {O. L.} and Ulitskaya, {A. Yu.}",
note = "Vinogradov, O.L., Ulitskaya, A.Y. Preservation of Logarithmic Convexity by Positive Operators. J Math Sci 213, 504–509 (2016). https://doi.org/10.1007/s10958-016-2721-5",
year = "2016",
doi = "10.1007/s10958-016-2721-5",
language = "English",
volume = "213",
pages = "504--509",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Preservation of Logarithmic Convexity by Positive Operators

AU - Vinogradov, O. L.

AU - Ulitskaya, A. Yu.

N1 - Vinogradov, O.L., Ulitskaya, A.Y. Preservation of Logarithmic Convexity by Positive Operators. J Math Sci 213, 504–509 (2016). https://doi.org/10.1007/s10958-016-2721-5

PY - 2016

Y1 - 2016

N2 - We show that the Szász–Mirakyan and Baskakov operators preserve the logarithmic convexity of functions, whereas the Bernstein and Kantorovich operators do not possess this property.

AB - We show that the Szász–Mirakyan and Baskakov operators preserve the logarithmic convexity of functions, whereas the Bernstein and Kantorovich operators do not possess this property.

KW - convex function

KW - Positive Root

KW - Identity Operator

KW - Positive Operator

KW - Approximation Theory

UR - http://www.scopus.com/inward/record.url?scp=84962308437&partnerID=8YFLogxK

U2 - 10.1007/s10958-016-2721-5

DO - 10.1007/s10958-016-2721-5

M3 - Article

AN - SCOPUS:84962308437

VL - 213

SP - 504

EP - 509

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 15680334